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Fig. 1. BodyTrak using a single miniature RGB camera: It is possible to estimate the full body pose using just one small
camera with a wide view angle, which is significantly more practical considering the size, weight and battery life. The
dimension of this final prototype is 84x36x25 mm with 82g.

In this paper, we present BodyTrak, an intelligent sensing technology that can estimate full body poses on a wristband. It only
requires one miniature RGB camera to capture the body silhouettes, which are learned by a customized deep learning model
to estimate the 3D positions of 14 joints on arms, legs, torso, and head. We conducted a user study with 9 participants in which
each participant performed 12 daily activities such as walking, sitting, or exercising, in varying scenarios (wearing different
clothes, outdoors/indoors) with a different number of camera settings on the wrist. The results show that our system can infer
the full body pose (3D positions of 14 joints) with an average error of 6.9 cm using only one miniature RGB camera (11.5mm
×9.5mm ) on the wrist pointing towards the body. Based on the results, we disscuss the possible application, challenges, and
limitations to deploy our system in real-world scenarios.
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Fig. 2. BodyTrak - body pose estimation using cameras on a wrist. In the first row, the user is performing an activity, and
the depth camera is displaying the body posture using skeletal points. The second row of images represents the set of four
images captured by a camera on the wristband and their accompanying segmented images. The black in the segmented
images is the background and the blue is marked as the user’s body. The ground truth rows signify the skeletal figure in
correspondence with the depth camera. In the Prediction, the row displays predictive body posture using the images input
through the wristband cameras.
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1 INTRODUCTION
Body pose estimation is becoming increasingly important in many fields such as health (e.g., physiology of
individuals with physical disorders such as scoliosis and Parkinson’s [5][42]), the gaming industry, sports analysis,
and even communication studies which can help us understand how we interact with one another through our
body language[50] [12] [21]. In order to track the body postures of a person, most of the prior work requires the
instrumentation of the environment (e.g., cameras[14], WIFI[27]). However, they may not work well when the
user is in motion, outside the indoor setting, or setting up the environment is not feasible.

To address these mobility issues, researchers have developed wearable solutions to estimate body poses. Most
of these systems require the users to wear multiple sensors (e.g., IMU) on the body [41, 45], which may not be
sustainable or comfortable in real-world settings. The recent advancements have shown the feasibility of using a
single wearable form factor, such as a chest-mounted camera[23], a hand-held smartphone[3], a hat-mounted
camera [28], or a 360° camera on the wrist[18], to estimate full-body poses. However, these form factors (chest-
mount or hat) may not be immediately acceptable or convenient for users to be worn in different daily activities.
For instance, chest-mounted devices such as GoPro are acceptable for a group of users in specific contexts. The
use of a 360° camera on the wrist [18] can capture full views of the wearer’s body for inferring body poses, but
it raises privacy concerns by capturing privacy-sensitive, irrelevant information for inferring body poses such
as the activity of bystanders and the environment in which the user is situated. Also, the two lenses for 360°
cameras may increase the size of the device and the battery consumption, two factors that are important for daily
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use. Therefore, in the future eco-system of wearables, it is essential to offer users a variety of wearable sensing
technologies to track body poses to decide the technology based on the context.
Compared to other form factors like the chest-mounted device or hat, wrist-mounted wearables is the most

popular wearable device on the market. Allowing a wrist-mounted device (e.g., smartwatch) to estimate full body
poses can potentially enable a variety of new applications, such as activity recognition, fine-grained exercise
tracking, and health sensing. We have already seen some smartwatches embed a miniature RGB camera 1.
Therefore, we develop our research question as:

• Is it possible to estimate the full body poses using a miniature RGB camera mounted on the wrist?

To answer this research question, we developed BodyTrak, the AI-powered wrist-mounted sensing technology
that can estimate full body poses. It uses cameras on the wrist to capture images of the body. Although these
images only contain incomplete body parts (body silhouettes), they are unique and highly informative depending
on the arm movements and body poses. Therefore, we derive the working hypothesis of BodyTrak: The incomplete
body parts/silhouettes captured by wrist-mounted cameras can be highly informative to infer the full body poses.

To verify the feasibility of working hypothesis, we developed a wristband prototype that can house up to four
miniature RGB cameras. This prototype was used to conduct a user study where we had 9 participants perform a
list of daily activities or exercises involving a wide variety of body movements. The data was used to identify
the optimal camera setting and evaluate its performance. The results showed that BodyTrak could estimate
the full-body pose, including the 3D positions of 14 body joints, with an average accuracy of 6.9 cm using one
miniature RGB camera (11.5mm × 9.5mm) pointing towards the body. Furthermore, we also conducted additional
studies to evaluate how BodyTrak would perform in different real-world scenarios (indoors, outdoors, wearing a
different shirt, remounting the device). Based on the results, we discussed the opportunities and challenges of
applying BodyTrak in real-world applications.
The contributions of the paper are:
• An intelligent sensing system that can infer 3D positions of 14 body joints (full body poses) from images of
incomplete body silhouettes captured by a one miniature RGB camera on the wrist.

• A user study with 9 participants to 1) find the optional position for the camera and 2) evaluate the
performance of BodyTrak in different activities under different scenarios.

• A discussion on the opportunities and challenges of applying BodyTrak on the future wearables in real-world
applications.

2 RELATED WORK
Our work is to estimate full body poses in 3D using a wrist band with cameras. In this section, we first review
the literature related to estimating 3D full-body poses using Non-wearable and wearable-based technologies.
Then, we discuss the previous research using wrist-mounted cameras to estimate body poses.

2.1 Estimating Full Body Poses using Non-wearable Devices
Applying external devices is one of the most typical methods of capturing body posture with either passive or
active sensing technology. Devices with high portability and compact dimensions, such as the Microsoft Kinect
[11] and Intel RealSense [10], have proved their effectiveness in motion capture. Due to the advances of the
RGBD camera, segmentation of objects from backgrounds and the continuous tracking of body movement can be
accomplished by these devices without the use of any markers, which are commonly used for 3D animation[16].
In commercial high-quality motion capture systems such as OptiTrack [24] and Vicon [36], several retroreflective
markers are usually placed on the rigid body where external cameras can easily capture them. Similarly, fiducials

1https://www.gadgetreview.com/best-smartwatch-camera
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Table 1. Comparison with Other Previous work. We note that it is not appropriate to directly compare which system performs
better based on accuracy because the evaluation methods are different.

Work Position of
the Sensor Body Estimation Sensor Tracking Moment Activity ∗𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

xR-EgoPose[48] VR headset Full body Fish-eye camera Always on 9 5.82cm
Mo2cap2[52] Cap-mounted Full body Fish-eye camera Always on 8 6.14cm
Monoeye[22] Chest Full body Fish-eye camera Always on 3 5.0cm
You2Me[39] Chest Full body GoPro camera Always on 4 8.6cm

Pose-on-the-Go
[3] Smart Phone Full body Depth camera

IMU
When holding
the phone 6 <25cm

Real-time arm[33] Wrist An upper arm IMUs Always on 17 10.53cm for elbow
12.94cm for wrist

I am a smartwatch
[44] Wrist An upper arm IMU Always on 10 9.2cm

Ryosuke et al [18] Wrist Full body A 360° camera Always on 4 11.5cm
BodyTrak Wrist Full body A RGB camera Always on 13 6.90cm

are also used as a standard marker in optical measurement [34] while PhaseSpace [26] and VIVE [49] apply active
markers. Thanks to the flourishing of computer vision and machine learning, researchers are able to reconstruct
human poses simply using RGB images, which is present in works such as HybridTrak [54], DensePose [15],
PoseNet [29], and OpenPose [7]. In addition to utilizing cameras, projects utilizing inertial sensors [41], acoustics
sensors [2, 13, 53], RF [55] and magnetic fields [25] have also demonstrated impressive performances in human
pose estimation.
However, non-wearable devices with either optical or other sensors, such as RF [55] and magnetic field [25],

are sometimes not practical or even unavailable in the wild. Systems requiring markers typically involve a
specific working space, while other devices like the Kinect requires users to perform in front of the device. These
limitations restrict the user’s mobility and their applications in real-world scenarios.

2.2 Estimating Full Body Poses Using Wearable Devices
To overcome the constraints of the external non-wearable devices, researchers developed wearable technology
to track body poses. One method is to attach multiple Internal measuring units (IMU) to the body to estimate
the body postures [41, 45]. The recent work places fish-eye cameras on the hat[52], VR headset[48], or chest
[22, 39] to infer the full body poses. More recent work, Post-on-the-Go [3] allows the user to hold a smartphone
in hand to estimate the full body poses from a variety of built-in sensors. However, the above form factor such as
chest-band, hat, or holding smartphone, may not always be available to users in daily activities.
It is important to provide users with a variety of wearable sensing solutions to track body poses so that they

can choose the wearable technology based on the applications or contexts. BodyTrak offers such a new sensing
solution to continuously estimate full body poses using a wrist-mounted camera,

2.3 Activity Recognition Using Wrist-mounted Cameras
It is becoming increasingly common to see cameras integrated into commercial wearable watches, which allow
for easy communication and the capture of active moments. For example, WristCam, the first-ever camera for
Apple Watch, is a wearable, unobtrusive smartwatch with dual cameras 2. Researchers have explored using wrist-
mounted cameras to estimate hand poses[19, 30] or emotional state [40]. The most recent work [18] demonstrated
using a 360° camera on the wrist to estimate the full body poses with an accuracy of 11.5 centimeters. The 360°
2https://www.wristcam.com/
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camera was designed to capture possible entire body silhouette images for full-body pose estimation. However,
this approach might bring about privacy concerns since a 360° camera captures privacy-sensitive, irrelevant
information for the reconstruction such as the activity of bystanders and the environment in which the user is
situated. Also, the 360° camera at the current dimension and size may not be immediately practical to be integrated
to wrist-mounted wearables, as it contains two cameras with an ultra-wide lens, consuming more battery. In
contrast, BodyTrak shows that the partial silhouette body images captured by a wrist-mounted miniature RGB
camera (11.5 mm by 9.5 mm ) is enough to estimate the full body poses with an accuracy of 6.90 cm. Although
the 360° camera sensors can be very small, the use of one camera rather than two for the 360° camera module
inherently makes wrist-mounted hardware much cheaper, lighter, smaller, consuming-less battery and less power
to process the data without compromising any performance compared to [18]. We believe that BodyTrak could
provide a privacy-sensitive solution approach and the practical implementation to continuously track body poses,
considering the optimal position for the camera, device size, and battery consumption.
To facilitate the comparison between BodyTrak and other work, we present Table 1, where we listed the key

settings and performance of related wearable-based pose tracking systems. please note that because different
projects use different ground-truth acquisition methods, and normalization methods on measuring body skeletons,
comparing the performance between projects may not be fair and possible. For instance, BodyTrak uses a depth
camera as the ground truth acquisition method, which may introduce larger errors in capturing the body postures
compared to other motioncap systems. What we provide in the table is a reference point.

3 THEORY OF OPERATION

Fig. 3. Research Idea. The body silhouettes images captured by the camera on the wrist are unique from each human motion.
We believe that these different images are highly informative to infer full-body poses.

Under conventional CV methods for 3D full-body posture, a full-body image is needed to estimate body posture.
However, capturing the full body images with wrist-mounted cameras such as [18] brings about privacy concerns
since the captured images inevitably include the information of bystanders and the environment where the
wearer is situated. Unlike the conventional CV method, we believe that incomplete body parts in the images can
also be highly informative to infer the complete body poses, reducing privacy concerns (e.g., limiting information
of bystanders and the environments in the view). In other words, how the body parts were occluded provides rich
information on the body pose. For instance, intuitively, if certain body parts (e.g., right arms) are not captured in
the images, this occlusion already significantly limits the search space for all possible body poses, making an
accurate prediction. We observed that the partial body images/silhouettes captured from the wrist are unique on
different body poses, as shown in Fig. 3. Furthermore, recent work has already demonstrated that using partial
body images/silhouettes to estimate hand poses[20, 51] and facial expressions [8, 9]. Therefore, we believe that it
is possible for AI to learn the incomplete body silhouettes captured from the wrist to infer the full body poses on
the arm, legs, torso, and head.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 154. Publication date: September 2022.
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4 DESIGN SPACE OF BODY POSES
To verify the idea of BodyTrak, the first step is to consider the design space of body poses so that the design and
evaluation of BodyTrak would include the full range of all body movements. Based on human movement, the
two main factors we considered in our design space are upper body movement and lower body movement.

• Upper Body Movement: Since our arm moves in various ways, we have divided upper arm movement into
two categories: one arm and two arm movements. Arm movement is separated into the left arm or the
right arm. This is to account for users wearing the wristband on one side of their arm. In this case, only
one arm is moving in the activity, either the right or the left. Also, we divided the two-arm movements
into two dimensions: synchronous and asynchronous movements of both arms in which both arms are in
motion at the same time or each arm is in motion at a different time.

• Lower Body Movement: We have divided lower body movement into no movement and movements. No
movement (noted as Movement (x) in Fig. 3) means that the user is standing. Movement (noted as Movement
(O) in fig. 3) refers to the motion of the legs.

Fig. 4. Design Space. A matrix of 12 body movements that cover the full range of body movements.

Based on these considerations, we created the 4× two design spaces (see. Figure 4), allowing BodyTrak to explore
various body postures. In each category, we found daily activities from previous 3D full-body reconstruction
works [23] (walking, boxing, kicking, sitting) and common daily exercises (e.g., squat, front raise). This design
space ensures that users perform the full breadth of human motion by completing at least one activity from each
category. Finally, we chose 13 activities, including standing to evaluate our system. Standing was included to
account for the occlusion gestures as mentioned in section 3 (e.g., Right shoulder press and lateral raise).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 154. Publication date: September 2022.
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5 SYSTEM DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation of BodyTrak, which consists of four parts: the hardware
prototype, image segmentation and camera setting, 3D skeleton as the ground-truth for a full-body pose, and the
customized deep learning pipeline (see. Fig. 5), as detailed below.

Fig. 5. System Overview of BodyTrak. The prototype is put onto the user. They then perform 13 activities. While the activities
are being performed the cameras are capturing images of the body. These images are then segmented and fed into a CNN
which outputs an estimated body posture for each activity, using 14 skeleton points.

5.1 Prototype
5.1.1 Hardware. Our hardware prototype consists of three main components, the wristband with miniature RGB
cameras, a depth camera for tracking the ground truth of 3D body poses, and a PC for data processing. In order
to determine the best setting for miniature cameras on the wrist, we design a 3D printed wristband, which can
house up to four miniature RGB cameras (i.e. b006605 RGB Arducam). The camera array is used to collect data
to identify the optimized camera setting (e.g., camera positions, combinations). Each camera has a dimension
of 11.5mm × 9.5mm and a fixed FOV of 160° and is connected to a Raspberry Pi Zero using cables, as shown in
figure 5. An external power bank powers the Raspberry Pi and cameras. These cameras will capture images with
the resolution of 400 x 400 at 5 FPS, which are sent and saved on a laptop via WiFi.

The Raspberry Pi Zero and battery were placed in a 3D printed box measured at 168mm × 72mm × 25mm and
weighed in at 350g, which are held in the user’s hand during the study. We noted that this prototype is designed

Fig. 6. Experimental Setup. Our hardware prototype consists of three main components, the wristband with 4 miniature
RGB cameras, a depth camera for tracking the ground truth of 3D body poses, and a PC for data processing. We note that
the goal of the prototype is to find the best position for one RGB camera for evaluation. Please, see our final prototype using
one miniature RGB camera in Fig 1.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 154. Publication date: September 2022.
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to find the best position for one miniature RGB camera for evaluation. We asked the participants to hold the data
collection device in hand instead of wearing them on the body (e.g., armband) because these devices can occlude
the body images observed from the wrist if worn on the body. In order to simulate a real-world scenario where
the camera is embedded into a smartwatch, we decided to ask the participants to hold the Raspberry Pi Zero in
hand so that the cameras on the wrist would not capture any part of the device. All participants reported that our
prototype did not affect their movement during the experiments.
Lastly, we used Intel’s RealSense depth camera3 to record the ground truth of the 3D human body pose. The

application, i.e., Skeleton Tracking SDK for Intel® RealSense™ Depth, was employed to get 18 skeleton points on
the body, such as the shoulder, elbow, and knees (See Fig. 5). A PC was used for data processing. We built an
Ethernet network with high bandwidth between the Raspberry Pi boards and the PC to guarantee transmission
robustness and avoid frame dropping. By using timestamps, we synchronized the depth camera images relative
to those of the Raspberry Pis.

5.2 Body Segmentation and Camera Setting
5.2.1 Segmentation Technique. The idea of BodyTrak is to use a deep learning model to learn the partial
body/silhouette images to estimate 3D full body pose. The critical first step is to segment the body silhouette
from the captured images. Many previous machine learning systems have demonstrated reliable performances
on this task for human body segmentation [35, 38]. However, it was challenging for existing body segmentation
techniques to segment our partial body parts from the background. This is because when using existing techniques,
body parts such as the head or torso serve as reference points to infer a body part or position. When conducting
segmentation using partial body images, we might lose these fundamental body parts as reference points, as
shown in Fig. 3. After applying several body segmentation techniques such as PixelLib 4, Pose2Seg5, and CDCL
[31], we decided to use a well-known pre-trained model named FCN-ResNet101 [35]6 as our image semantic
segmentation method, which demonstrated reliable performances in our experiments (e.g., different cloth and
indoor/outdoor setting) as shown in Fig 7.
To use FCN-ResNet101, we first normalize the size of our input images to 400 × 400. Then, we segment the

human body from the background using FCN-ResNet101, where we decides whether each pixel belongs to the
background or the human body. Although the segmentation was relatively stable, it is not perfect. We found it
occasionally miss-segmented body parts. In our experiment, we used all images regardless of the segmentation

3https://www.intelrealsense.com/depth-camera-d435/
4https://github.com/ayoolaolafenwa/PixelLib
5https://github.com/erezposner/Pose2Seg
6https://pytorch.org/hub/pytorch_vision_fcn_resnet101/

Fig. 7. Body Segmentation. The images provided ensure that we can visually distinguish between properly and poorly
segmented images. The blue in the segmented images represent the user’s body and the black indicates the background. In
image (b) the user is performing a different posture and wearing different clothing. In the outdoor environment (c), segmented
images are displayed when the user is performing the activity in an outdoor setting.
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Fig. 8. Camera Setting. In this figure is the camera arrangement, along with their angular measurements. The x plane runs
horizontally across the wrist, the y plane runs vertically across the wrist, and the z plane runs away from the wrist. In blue is
the rotational degree of the camera on the y-z plane. In blue is rotational degree of the camera on the x-y plane. In these
other images the participant demonstrates how the wristband is held and the directions in which the cameras point.

results to train and test the performance on BodyTrak. Therefore, if the body segmentation in the images improves,
the performance of BodyTrak can potentially be even better. What we present in this paper is just a baseline.

5.2.2 Camera Setting: Position Arrangement. We place four miniature cameras on the wrist to explore the best
camera setting. An optimized camera setting (number, position and orientation) is the key for this system to
accurately estimate full body posture. By experimenting with our research team, we aimed to find the best camera
setting to capture maximum information on body poses. After conducting a pilot study on segmentation, we
determined the camera settings using the following criteria.

• In order to reliably segment the body, cameras are better to be set pointing to the head or torso in
combination with other body parts such as arm and leg.

• Lower body images are important to compliment the information we get from the upper body. We need to
arrange the cameras to capture this part of the body.

Based on these criteria, we investigated the camera arrangement considering 1). the range of arm movement
such as holding up or folding the arm. 2). the natural rotation of the wrist reaching up to 150° [43] and 3) our
cameras’ FoV is 160°. As a result, the first camera (See. Fig. 8. C#1) is empirically placed on the side of the arm at
60° perpendicular to the arm. This ensures that we can capture more body information, including head pose, when
users stretch their arms without folding. The other three cameras (see. Fig. 8 C#2, C#3, and C#4) are positioned
side by side on the inner part of the arm considering the rotation of the wrist when the arm is folded. The
positions and arrangement were empirically decided based on the preliminary experiments on researchers. Here,
we titled and rotated the cameras as seen in Fig. 8 (the tilt of cameras is marked in blue and rotation in red).
The purpose of titling the cameras, from 30° to 60°, is to make each camera pointing more towards the body. In
addition, all three cameras excepting C#1 were rotated from 45° to 60°, which was helpful to capture the torso
with lower/upper body for proper segmentation. In Section 6.3, we will discuss the impact of camera settings on
the performance.

5.3 Ground Truth Acquisition
We used the depth camera (Intel RealSense) and associated body Skeleton tracking application to capture the
groundtruth of body poses, including 3D positions of 18 body joints on eyes, ears, nose, arms, torso, and legs
Fig.9(a). We exclude eyes and ears with only the nose point representing head position. Thus, we have 14 skeleton
points as ground-truth for the full body poses. As each person has a different height and body size, we normalized

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 154. Publication date: September 2022.
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Fig. 9. Ground Truth Acquisition. Image (a) represents the ground truth that is displayed when using the RealSense depth
camera. In image, (b) we depict the normalization values for each body part. In figure (c) the image displays the normalized
skeleton after it is passed through the deep learning pipeline.

skeleton information before feeding it into a user-independent deep learning model. As shown in Fig. 9(c), we
normalized the skeleton so that the shoulder is parallel to the 𝑌𝑍 plane and the body center (chest joint) is at the
origin of the coordinate. We then normalized the length of the body with values as shown in Fig.9(b). Here we
label the coordinate of joint 𝑗 , the coordinate 𝑥,𝑦, 𝑧 of 𝑗 after normalization is calculated with the equation:

Normalized𝑗,𝑝 = NormLength𝑖 ×
Raw𝑗,𝑝

RawLength𝑖
+ Normalized𝑗−1,𝑝

where 𝑝 equal to either 𝑥 , 𝑦, or 𝑧, RawLength𝑖 and NormLength𝑖 is the length of the corresponding trunk
before and after normalization, and Normalized𝑗−1,𝑝 is the coordinate of the last normalized joint, where we start
normalization from Chest. For example, with raw coordinate 𝑧 of left wrist,

Normalizedleft wrist,𝑧 = 1 × Rawleft wrist,𝑧

RawLengthleft wrist to left elbow
+ Normalizedleft elbow,𝑧

As we discussed in the previous section, we admit that using a depth camera (Intel RealSense) to acquire the
ground truth may not be as accurate as using other MotionCap system. A more accurate MotionCap system may
potentially futher improve the performance of BodyTrak.

5.4 Deep Learning Pipeline
5.4.1 Network Architecture. Convolutional neural networks have demonstrated promising performance in dealing
with 2D image tasks such as classification, retrieval, and segmentation as compared with other traditional machine
learning algorithms [17]. Another significant reason for attempting to solve this problem through a deep learning
model is that mapping partial body images to locomotion is not straightforward. Directly detecting the connection
is even challenging for human eyes. Thus, we hypothesize that a more complex machine learning model, such as
deep learning, would be able to identify the hidden connections especially using 2D images as input data. We
developed our model with four branches for four image streams captured by each camera. Each branch consists
of four 3 × 3 convolutional blocks followed with 2 × 2Max Pooling layer as shown in Fig.10. We then conduct
late fusion by concatenating the output of fully connected layer in each branch and add final fully connected
layer to obtain the estimation of 14 joint coordinates.
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Fig. 10. Deep Learning Model Structure

5.4.2 Model Training. Using the Adam loss function, our model is trained to predict 42 parameters (i.e., 14 joint
points × 3 coordinates (x, y, and z)). The training was stopped when a monitored loss had not improved using ten
patience. In addition, we reduced the learning rate (factor=0.2, patience=5, _lr=0.001) using five patience when
the loss has stopped improving, which works well when learning stagnates. We only kept the model that has
achieved the best performance before stopping. Our model is trained for an average 82.4 epochs (SD = 21.4) on
different training sessions for all experiments.

6 EVALUATION

6.1 Procedure
6.1.1 Participant. We recruited 9 participants (6 Male, Mean = 26.33, SD =5.39) from the university campus to
evaluate the system. All participants were right-handed and wore our hardware prototype on their left wrist,
which follows the tradition that people wear smartwatches on the non-dominant hand.

6.1.2 User Study Procedure. Before data collection started, participants were asked to watch a tutorial video
that consisted of the researcher performing all 12 activities as shown in our design space (See figure 4). This
helped participants to get familiar with the activities they needed to perform. At the end of the training video,
the researcher handed the participant the 3D printed box filled with the raspberry pis and power sources and
wrapped the Velcro portion of the device on the left hand. After mounting the prototype on the participant, they
were instructed to follow the video instructions on the monitor to perform the 12 activities in four sessions.

6.1.3 Data Collection. We have four sessions for data collection. In each session, participants were asked to
perform 12 activities. We intentionally asked the participants to slowly perform these activities such that the
depth camera could capture the ground truth reliably. In the first session, the participants repeated each activity
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Table 2. Results of Within Session Evaluation. (cm for Mean Per Join Position Error (MPJPE) and percentage in parentheses
for the 3D percentage of correct keypoints (PCK)) R: Right, L: Left; Ch: Chest, S: Shoulder, E: Elbow, Wr: Wrist, Wa: Waist, K:
knee, A: Ankle.

Moition
Type Avg Nose Ch RS RE RWr LS LE LWr RWa RK RA LWa LK LA

Average 6.34
(84.2)

1.95
(100)

0.00
(100)

1.12
(100)

9.44
(74.7)

14.9
(58.3)

1.18
(100)

9.16
(75.5)

13.5
(63.5)

5.36
(88.3)

5.36
(83.9)

6.87
(82.6)

5.65
(86.4)

6.41
(83.6)

6.71
(83.0)

Standing 4.21
(88.9)

1.37
(100)

0.00
(100)

0.74
(100)

7.00
(77.9)

10.12
(66.8)

0.91
(100)

5.43
(83.9)

6.18
(78.9)

4.12
(89.8)

4.05
(90.9)

4.49
(89.3)

4.04
(92.4)

4.44
(87.8)

4.55
(86.7)

Right Shoulder
Press

4.03
(87.4)

1.36
(100)

0.00
(100)

0.78
(100)

9.51
(68.9)

12.91
(57.8)

0.84
(100)

6.12
(79.4)

7.11
(77.5)

4.17
(90.3)

4.33
(88.8)

4.47
(89.0)

3.21
(93.9)

4.16
(88.8)

4.11
(90.1)

Left Shoulder
Press

4.26
(89.2)

1.60
(99.9)

0.00
(100)

0.89
(100)

5.61
(84.9)

8.12
(73.8)

0.83
(100.0)

7.01
(77.6)

10.45
(66.5)

3.88
(94.5)

4.43
(89.7)

4.44
(89.9)

3.85
(92.7)

4.28
(89.5)

4.38
(89.8)

Lateral Raise 4.59
(87.2)

1.65
(100)

0.00
(100)

0.83
(100)

7.06
(78.5)

11.17
(64.7)

1.05
(100)

7.64
(76.4)

11.50
(64.4)

4.15
(89.7)

4.71
(89.4)

4.86
(86.5)

4.09
(89.9)

4.57
(88.2)

4.96
(93.8)

Front Raise 4.76
(84.5)

1.57
(100)

0.00
(100)

0.98
(100)

7.20
(73.7)

12.80
(58.5)

1.03
(100)

8.08
(70.8)

12.39
(58.2)

4.01
(90.2)

4.75
(88.0)

5.01
(85.6)

4.21
(88.8)

5.11
(85.4)

5.02
(84.5)

Cross Arm 4.34
(86.4)

1.36
(100)

0.00
(100)

0.81
(100)

6.95
(77.4)

14.53
(54.4)

0.90
(100)

6.85
(78.3)

11.47
(61.4)

3.66
(93.4)

4.38
(90.7)

4.61
(88.0)

4.24
(89.8)

4.54
(89.4)

4.78
(87.4)

Boxing 5.26
(81.4)

1.76
(99.9)

0.00
(100)

1.20
(100)

11.29
(64.4)

15.41
(45.7)

1.07
(100)

10.31
(66.8)

12.66
(59.2)

4.85
(85.4)

5.39
(81.8)

5.64
(80.7)

5.08
(86.3)

5.01
(86.7)

5.47
(83.4)

Tennis 6.28
(80.3)

1.77
(99.9)

0.00
(100)

1.11
(100)

10.04
(67.7)

14.68
(53.4)

1.03
(100)

8.80
(71.7)

13.84
(55.8)

5.20
(85.7)

6.51
(78.8)

6.61
(79.1)

5.62
(79.7)

6.58
(78.1)

7.10
(76.4)

Kicking 6.76
(80.7)

1.80
(100)

0.00
(100)

1.04
(100)

7.19
(76.8)

12.55
(58.7)

1.05
(100)

8.19
(74.1)

12.94
(58.5)

5.63
(83.7)

7.84
(75.2)

9.59
(69.9)

6.14
(78.0)

6.67
(78.7)

7.53
(76.2)

Sitting 4.74
(88.2)

1.69
(100)

0.00
(100)

0.86
(99.9)

5.29
(84.3)

7.41
(73.0)

0.76
(100)

5.23
(83.8)

6.87
(77.7)

3.90
(94.5)

5.72
(81.8)

5.33
(84.6)

4.63
(87.8)

5.55
(82.8)

5.13
(85.4)

Squat 6.12
(79.3)

1.76
(100)

0.00
(100)

1.02
(99.9)

9.18
(70.5)

18.70
(35.7)

1.10
(100)

7.63
(74.9)

15.16
(46.8)

4.90
(86.3)

6.08
(80.5)

6.45
(78.8)

5.68
(80.9)

7.03
(77.9)

6.65
(78.5)

Walking 5.94
(81.8)

1.70
(99.9)

0.00
(100)

1.02
(100)

8.06
(73.8)

12.25
(58.7)

1.02
(100)

8.01
(74.4)

11.37
(63.9)

4.89
(80.4)

5.78
(80.8)

6.41
(79.1)

5.62
(83.5)

6.26
(78.9)

7.15
(73.9)

Stepping a Stair 7.19
(79.9)

1.86
(100)

0.00
(100)

1.03
(100)

8.59
(72.8)

13.43
(56.9)

1.24
(100)

9.20
(70.0)

13.35
(57.5)

5.30
(84.8)

7.56
(74.8)

7.91
(73.7)

6.03
(79.5)

7.46
(75.4)

7.75
(74.0)

ten times. In the later three sessions, the participants repeated each activity three times. All activities were
randomly ordered.

The first session evaluated the system performancewithin the same sessionwhere the devicewas not remounted.
In the second session, we asked the participant to remount the wristband to evaluate how the performance would
be impacted after remounting. In the third session, the participants were asked to wear a different shirt to evaluate
how would BodyTrak perform if the cloth was different. In the fourth session, the participants performed the
activities in an outdoor setting to investigate how our system operates in outdoor environments where lighting
and background vary.

6.2 Result
In this section, we reported the performance of BodyTrak in different settings, including without remounting,
after remounting, after changing the cloth, and outdoor environments. We used the images captured from all
four cameras in the following experiments. Also, we report the performance by using all possible combinations
of cameras to propose the best camera setting.

6.2.1 Evaluation Matrix. We calculated the performance, i.e., accuracy, by the following two ways: 1) Mean
Per Joint Position Error (MPJPE) and 2) the percentage of correct keypoints (PCK) accuracy. MPJEP is widely
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Fig. 11. Comparison on Performance between Across-session and Leave-one-session-out. In this figure, the blue bars indicate
the error when data from the Across-session evaluation was included. The red bars indicate the error from the Leave-one-
session-out evaluation. As demonstrated in this figure by including more data (i.e. Leave-one-session-out evaluation), our
performance improved.

used in 3D pose estimation while PCK is more expressive and robust than MPJPE, revealing individual joint
mispredictions more strongly [37]. MPJPE is calculated by taking the Euclidean distance between the predicted
3D joints and the true value of the 3D joints from the ground truth. Then it is calculated by averaging over the
sequence. This distance is then scaled to centimeters (cm) based on each participant’s arm (Mean = 22.78 cm,
SD = 1.4 cm). Also, we calculate 3D PCK performance by picking a threshold of 150mm as suggested in [37]. It
measures if the Euclidean distance between predicted 3D joints and the true 3D joint values from ground truth is
within 150mm. We report MPJPE and 3D PCK over all 14 body joints and 12 poses. For reporting the accuracy of
each pose, a sequence was manually divided.

6.2.2 Within Session Evaluation. At first, we conducted a within-session evaluation on BodyTrak using the data
from the first session as the training and testing data. Specifically, we used the first 8 instances of the 12 activities
(based on chronicle order) as the training data and the last 2 instances as the testing data. Please note that the
collected data was not shuffled when splitting the training and testing set. The results show that BodyTrak
achieved an average of 6.34 cm (SD = 0.61 cm) or 84.2 % 3DPCK (SD = 1.87%), indicating that the body silhouettes
captured using wrist-mounted cameras are informative to estimate body pose as shown in Fig. 2.
Similar to other works [22, 39], the joints on the wrist and elbow showed the worst performance among all

14 body joints. This is not surprising because the wrist and elbow have the largest moving distance compared
to the body joints on other parts. Furthermore, as we expected, the error in the positions of body joints on the
right arm and wrist was larger than on the left. Because the device was worn on the left, which naturally would
capture more information about the left half of the body. The detailed results were presented in Table 2.

6.2.3 Across-session Evaluation. In the second experiment, we evaluated how would BodyTrak perform when the
environment contexts changed, including remounting the device, changing the cloth, and outdoor environments.
In this experiment, the model was the same as the one used in the within-session experiment, where the

training data set came from the first eight instances in the first session. The testing data came from the second
(remounting), third (change cloth), and fourth session(outdoor), respectively. The results showed that Bodytrak
achieved a average accuracy of 9.31 cm (SD = 1.07 cm), 11.16 cm (SD = 1.03 cm), and 12.33 cm (SD = 1.27 cm),
respectively in these three testing sessions. For 3DPCK performance, it achieved 71.3% (SD = 1.97%), 66.2% (SD
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Table 3. Results of User Study under different conditions. (cm for Mean Per Join Position Error (MPJPE) and percentage in
parentheses for the 3D percentage of correct keypoints (PCK))

Evaluation Type Across-session Leave-one-session-out
Testing Session Session 2 Session 3 Session 4 Session 2 Session 3 Session 4

Avg. 9.31 (71.3) 11.14 (66.2) 12.33 (63.4) 9.30 (72.4) 10.12 (69.0) 11.33 (64.8)
Nose 2.62 (100) 2.96 (100) 3.70 (99.8) 2.78 (100) 2.96 (100) 3.28 (99.9)
Chest 0.00 (100) 0.00 (100) 0.00 (100) 0.00 (100) 0.02 (99.9) 0.00 (100)

Right Shoulder 1.39 (100) 1.66 (100) 2.21 (99.9) 1.57 (100) 1.75 (100) 2.17 (99.9)
Right Elbow 13.05 (62.8) 15.93 (52.2) 16.93 (47.5) 13.24 (62.0) 14.20 (58.9) 15.89 (45.9)
Right Wrist 23.03 (8.5) 27.03 (4.31) 28.94 (6.45) 22.61 (10.2) 24.03 (7.1) 26.94 (8.2)
Left Shoulder 1.64 (100) 1.75 (100) 2.23 (99.9) 1.75 (100) 1.77 (100) 2.08 (100)
Left Elbow 12.59 (63.2) 15.18 (54.9) 16.88 (48.2) 12.57 (62.8) 13.79 (52.4) 15.19 (51.2)
Left Wrist 20.00 (16.2) 24.67 (7.8) 27.37 (5.4) 18.83 (39.2) 20.84 (15.4) 23.85 (7.9)
Right Waist 7.63 (80.2) 8.35 (78.9) 9.99 (72.1) 8.00 (78.0) 8.29 (77.6) 9.33 (73.4)
Right Knee 9.64 (73.3) 11.26 (68.8) 12.25 (63.4) 9.50 (74.2) 10.41 (69.8) 10.92 (69.3)
Right Ankle 10.48 (70.1) 12.73 (62.3) 14.29 (58.1) 10.25 (70.8) 11.55 (66.2) 13.01 (61.8)
Left Waist 8.57 (78.1) 10.72 (69.1) 11.99 (62.1) 9.07 (74.3) 9.60 (73.1) 11.26 (64.1)
Left Knee 9.29 (76.1) 11.43 (66.8) 12.41 (62.8) 9.56 (71.9) 10.68 (63.3) 11.82 (64.7)
Left Ankle 10.26 (69.9) 12.63 (61.1) 13.37 (61.8) 10.43 (70.3) 11.82 (66.1) 12.88 (60.9)

= 2.21%), and 63.4% (SD = 2.10%), respectively in the three testing sessions. Although the overall accuracy was
worse than within-session performance, it indicates the potential of applying BodyTrak in real-world settings.

6.2.4 Leave-one-session-out Evaluation. One possibility on why the performance was worse across sessions is
that the training data was too small or limited. As a result, the model has not seen enough variance of the data in
different settings. In order to investigate this issue, we conducted the third experiment: Leave-one-session-out.
We used 3 sessions as the training data, and one session as the testing data. This process was repeated four
times so that each session was used as a testing session once. The results showed that BodyTrak achieved an
average accuracy of 9.30 cm (SD = 0.75 cm), 10.12 cm (SD = 1.17 cm) and 11.33 cm (SD = 1.11 cm), when session
2 (Remounting), for session 3 (Cloth) and session 4 (Outdoors) were used as testing sessions respectively. For
3DPCK performance, it achieved 74.5% (SD = 2.23%), 68.9% (SD = 2.17%), and 63.1% (SD = 1.93%), respectively
in the three sessions mentioned above. Compared to the second experiment, leave-one-session-out improved
the performance by around 1 cm in each session (See. Fig 11). Also, leave-one-session-out leads to 1.1% 2.8%
3DPCK improvement on each over across session. It indicates that if larger and more diverse training data can be
collected, the performance of BodyTrak can be further improved especially when it was used in different settings.
Table 3 summarized the result in detail.

6.3 Comparison of Different Camera Settings
Here, we would like to explore whether fewer cameras can solve the problem in consideration of the real-world
application, size, and battery capacity. Thus, we further analyzed how the number of cameras has affected
the performance. We used all possible combinations of cameras to conduct the within-session experiment and
across-session experiments. The results (detailed in Table 4) showed that camera #1 is the most informative
camera. If only using the data from camera #1, the performance of BodyTrak can still achieved an average
accuracy of 6.9 cm (82.1 % 3DPCK) in within-session experiment, compared to 6.3 cm (84.2 % 3DPCK) using all
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Table 4. The Impact of Camera Settings (cm for Mean Per Join Position Error (MPJPE) and percentage in parentheses for the
3D percentage of correct keypoints (PCK))

Evaluation Type Within Session Accross Session
Setting Camera Session 1 Session 2 Session 3 Session 4

One Camera

c#1 6.90 (82.1) 11.74 (64.2) 12.92 (60.1) 13.49 (62.8)
c#2 6.89 (83.3) 13.37 (61.2) 13.50 (61.4) 14.53 (58.0)
c#3 7.25 (79.9) 12.91 (62.1) 13.41 (61.6) 15.11 (55.2)
c#4 7.41 (78.2) 14.05 (60.8) 14.42 (59.1) 14.42 (59.9)

Two Cameras

c#1, c#2 6.69 (82.0) 12.25 (63.7) 13.03 (62.1) 13.80 (60.3)
c#1, c#3 6.82 (82.7) 10.68 (71.3) 11.98 (64.5) 14.27 (60.3)
c#1, c#4 6.99 (81.7) 12.65 (63.3) 13.03 (62.2) 14.27 (60.2)
c#2, c#3 6.79 (82.2) 10.84 (70.1) 13.05 (62.3) 13.05 (62.2)
c#2,c#4 6.98 (80.7) 11.49 (68.5) 13.48 (61.9) 13.48 (61.0)
c#3,c#4 7.25 (78.8) 13.90 (60.2) 14.69 (57.9) 14.69 (56.9)

Three Cameras

c#1,c#2,c#3 6.46 (83.8) 11.79 (63.8) 12.80 (60.1) 13.64 (68.0)
c#1,c#2,c#4 6.51 (82.7) 10.51 (71.0) 12.12 (63.7) 12.94 (62.8)
c#1,c#3,c#4 6.63 (82.3) 10.02 (72.8) 11.59 (64.2) 12.71 (62.1)
c#2,c#3,c#4 6.63 (82.5) 13.17 (62.8) 13.71 (61.0) 14.10 (60.1)

Four Cameras c#1,c#2,c#3,c#4 6.34 (84.2) 9.30 (74.5) 11.16 (68.9) 12.33 (63.1)

four cameras. Our interpretation is that camera 1 with a wide view angle, may cover on average more information
on the upper body and lower body.

6.4 An Additional User Study with the Final Hardware Prototype
This result showed that using one camera can estimate the full body poses with an accuracy of 6.9 cm. However,
the prototype used in the first study was designed to house 4 cameras, which helped identify the best camera
position #1.
Based on the optimal camera position identified in the study, we further design another hardware prototype

that only house one camera at position #1, as shown in 1. The camera is connected to a Raspberry Pi zero for
data collection. In order to verify that the final prototype provides a similar performance as the original one, we
conducted a follow-up study with four participants. The study procedure, evaluation protocol, and algorithms
are similar to the previous study. The result showed that using the final prototype, BodyTrak achieved 6.96 cm
in within-session experiment and 11.34cm (SD = 0.87 cm), 13.12cm (SD= 1.28 cm), 13.51cm (SD = 0.98 cm) for
session 2, 3 ,4 respectively.For 3DPCK performance, it achieved 81.7% (SD = 0.96%), 64.9% (SD = 1.01%), 61.2% (SD
= 0.77%), and 62.9% (SD = 0.81%), respectively in the four sessions mentioned above. The performance is similar
to the result from the first prototype that housed four cameras. It demonstrated that using one miniature RGB
camera on the wrist can estimate the full body poses. As we have discussed previously, many existing commodity
smartwatches already have a built-in camera. By slightly changing the position and orientation of the camera,
these built-in cameras can potentially be repurposed to track full-body poses on a commodity smartwatch.

7 DISCUSSIONS

7.1 Privacy Issue
A wearable camera will always raise concerns about privacy. As BodyTrak does not intend to capture full views of
the body, we think BodyTrak has a clear advantage in protecting the privacy of the user over [18]. A 360-degree
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camera can capture more information than a miniature RGB camera used in our system. However, the use of a
360-degree camera raises privacy concerns, capturing not only privacy-sensitive but also irrelevant information
such as the activity of bystanders and the environment in which the wearer is situated. For example, the frequency
with which bystanders around the wearer are seen and the amount of sensitive information might be much more
than those of BodyTrak. Inherently, a 360-degree camera captures more surrounding information by about 66%
compared to a 160-degree camera. In comparison, our system significantly mitigates privacy concerns in two
ways. First, our system is designed to point the camera only towards the wearer’s body, limiting the background
environment in the view. Second, our system does not need to capture the full body, limiting the wearer’s body
in the view as well. However, our system might still include the bystanders’ information in a few scenarios, e.g.,
when the bystanders are next to the wearer within about 1m or when the wearer is raising the wrist over the
elbow position. However, these scenarios would not happen frequently in daily activities. Also, to address this
issue, one solution is to extract features on the fly. Instead of saving the raw RGB images, we can only segment
the images on the device (e.g., smartphone), containing only the body silhouettes. In this case, even if the deep
learning model is trained or running on the cloud, transmitting the segmented images would not contain much
of the sensitive private information of the user.

7.2 Body Segmentation
For body image segmentation, we only use the pre-trained version of the segmentation model, FCN-ResNet101.
However, this model might not work well with images that did not include a part of a human body, e.g., head
and leg. However, the images captured by the 160-degree camera can include the combination of the parts of a
head, arm, or legs, which allows the pre-trained model to succeed in segmenting the partial body. We found that
the key to reliable segmentation by FCN-ResNet101 is to have the user’s head or torso be sufficiently framed
in the camera. Although the segmentation was relatively stable, it is not perfect. One possible way to improve
the performance of the segmentation is to train the model with a new dataset. For example, we can collect the
data with participants wearing the device in a clear background (e.g. green chroma key) and then synthesize the
data with the different background images. Also, like [18, 22], a large-scale synthetic dataset can be rendered by
humanoid models having a virtual camera on the wrist.

7.3 Performance Comparison
We believe that it is challenging to directly compare which system performs better based on accuracy because
the system design principle, evaluation methods, and user study procedures are different (e.g., different input
images, DL model design, network training, and training dataset). Multiple factors in the system design may
contribute to better performance compared to [18]. We assume that one factor is input images for DL models.
The input images for 3d body pose estimation come from different angles. [18] placed the 360 camera on the
wrist closer to the back of the hand. It captures a lot of surrounding information with 360 camera, which may
increase the difficulty of segmenting the human body from the background. On the other hand, our captured
images are largely about the torso and head, which may be easier for segmentation. Furthermore, the complexity
of the models might contribute to the difference in performance as well. Compared to [18], which uses a more
completed model (ResNet + BiLSTM + MLP), we developed a relatively simple CNN model to infer 3d body poses.
Since the body silhouette image is binary, we chose a less complex model. In practice, we observed that our
simpler model may help the model to be more generalizable and reduce the risk of potential over-fitting, given
relatively smaller training datasets.
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7.4 User-independent Model
The experiment above was all conducted using user-dependent models, where the training and testing data came
from the same participant. This means, a new user has to provide training data before using the technology,
which may not be preferred from the user experience perspective. Therefore, we conducted one more experiment
to evaluate how would BodyTrak was trained and tested using user-dependent models. Thus, we conducted a
leave-one-participant-out evaluation, where we used all data from 8 participants to train the model, and then used
sessions 2,3,4 as the testing data respectively. This process was repeated 9 times so that each participant’s data
was used as the testing data once. The results showed that the average error of estimating 14 body joints positions
were 11.37cm (SD = 1.47 cm), 11.70cm (SD = 2.11 cm), 13.10cm (SD = 1.58 cm) for session 2, 3 ,4 respectively.
The performance was worse compared to the results from user-dependent models, which is expected. Because
participants’ body shape, cloth, and hair, are likely different from each other, which leads to different body
silhouettes even if the body pose is the same. However, the performance is also encouraging, which indicates
the possibility of building a user-independent model in the future, especially if significant larger training data
with more participants can be collected. Another possibility of addressing this issue is to generate synthetic
training data to simulate different body shapes, cloths, hairs, and backgrounds, as demonstrated in [22]. This
would greatly improve the diversity in the training data without the need of collecting data from participants.
We will leave this to future investigation.

7.5 Real World Application
With the development of commercial smartwatches with cameras such as WristCam7, it is possible that our
system can be integrated into a commercial smartwatch in the future. In this section, we discuss several concerns
regarding the deployment of our system in real life. These topics are divided into the future areas of application
for BodyTrak and the hardware considerations for deploying this system.

7.5.1 Areas of Application. By using 3D body reconstruction in a smartwatch we can get important information
about human behavior. Notably, this technology can make an improvement in recognizing detailed daily activities
using estimated body poses e.g., stepping on stairs, walking, running, or different types of exercises like tennis,
boxing, and so on [6, 46]. By maintaining a record of these detailed daily activities with BodyTrak, it could provide
workout progress and offer suggestions for improving the wearer’s health. For AR/VR applications, estimated
body poses could contribute to making immersive VR environments. For example, the body poses can be used for
digital characters in the virtual environment to recognize and automatically reproduce the same pose as a person
who wears BodyTrak.

7.5.2 Hardware Considerations. Overall, BodyTrak shows reliable performance using a one miniature camera
on the wrist. we believe that our proposed system using one miniature camera is more practical than using a
360-degree camera [18]. There seems no 360-degree camera available on any wearable wrist-mounted device.
If we place any similar 360-degree camera on a wristband as [18] or the above smartphones, the wristband
would become heavy and impossible to be worn in daily activities. Also, Laying the sensor flat on the skin will
automatically lose half of the view angle because the skin will block it. Putting another camera used by the
Protruly8 on the other side will increase the view angle. However, this is not necessary for improving performance
and will only increase device size, cost, and power consumption. Even if eventually, technology revolution would
allow cameras to be miniaturized and battery capacity is no longer an issue on a smartwatch, our system still

7https://www.wristcam.com/
8https://www.gsmchoice.com/en/catalogue/protruly/darlingvrd7/
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provides a feasible solution before that days arrive, which we believe will not be soon. Instead, it has been widely
demonstrated that one miniature RGB camera can be added to a regular smartwatch 9.

Besides the weight and size, our system of using one camera also shows the advantage of energy consumption
and requires less power to process the data without compromising any performance (if not better). Nevertheless,
one important challenge of deploying BodyTrak on a commodity smartwatch is how to integrate the hardware
into the smartwatch in a battery-sustainable manner. In our prototype, we implement the system with Raspberry
Pi Zero and RGB cameras. The no-load power consumption of Raspberry Pi Zero is about 80 mA (0.4W) and 140
mA for the camera module in video mode measured by PowerJive USB Power Meter [4]. With further optimization
of the power consumption by using a customized board, the power consumption is more manageable, especially
if only using one camera.

In terms of computational burden, in our study, we recorded the images and then processed all the data offline on
a workstation. However, moving forward, the implementation of our system can be altered by applying one of the
following settings. The first option is to transmit all data to a cloud or remote server using wireless communication
methods such as WiFi. The major issue in this setting is the data transmission speed and computation power of
cloud/remote computing. The second option is to deploy the machine learning model on the edge device such as
a smartphone. With the advancement of smartwatch processors and GPUs, faster predictions on edge devices is
possible in the future.

7.6 Limitations and Future Work
BodyTrak has demonstrated the feasibility of 3D full-body reconstruction using a wristband, showing a good
performance over varying scenarios. However, this is just the first step toward a smartwatch that can track
full-body poses in free-living conditions. There is apparent room for improvement.

First, our training data set is relatively small. If we include a larger dataset with diverse users and activities, the
performance of the system is likely to be improved, especially across sessions, and in user-independent models.

Second, the current model is a CNN. Given the body, posture contains rich temporal information. A time-series
deep learning model, i.e., LSTM, can potentially further improve the performance.
Third, if we add IMU data on the wristband (also widely available on smartwatches), using fusing the data

from IMU and cameras, can potentially further improve the estimation performance.
Fourth, the camera arrangement for the study to find the optimal position is empirically decided. To systemically

explore the position, the post-hoc study by cropping the images from a larger view in [18], is feasible. However,
this type of simulation does not always provide accurate estimation compared to data collected in the real world.
For instance, [18] captured 360 degree images on the wrist. However, the camera setting and position would
result in variance in the images between cropped images compared to true images captured with a single RGB
camera.
Fifth, the ultimate goal of our research is to understand human behavior based on human action recognition

(HAR) for various fields such as health and augmented reality. In doing this, we believe that inferred 3D skeleton
values from BodyTrak could be utilized for HAR with recent machine/deep learning techniques. Recent work [1]
has developed HAR models using Kinematics Posture Feature (KPF) extraction from 3D joint positions based on
skeleton data for action recognition. [32, 47] also employ deep convolutional neural network (DCNN) models,
such as ResNet18 and MobileNetV2, for skeleton-based posture recognition. Although The classification on 12
poses from our design is beyond the scope of this paper, we will explore this for future work.

Lastly, the ground truth acquired by RealSense depth camera was relatively stable. It still includes errors and
noise occasionally. If we have a more accurate and reliable ground truth (MotionCap system), the performance
can potentially be improved too. Besides, using a depth camera as the ground truth acquisition method also

9https://www.gadgetreview.com/best-smartwatch-camera
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limited the activities that the participants can perform. For instance, the participants can not actually walk or run
in large distances. Otherwise, the depth camera would not capture the full body images, which would lead to
inaccurate estimation of body poses. Therefore, one important next step is to use more accurate ground-truth
acquisition methods to improve the performance of the system under more challenging scenarios and contexts.

8 CONCLUSION
This paper presents BodyTrak, an intelligent sensing method that can estimate full body poses including the
3D positions of 14 body joints on legs, head, arms, and torso using a miniature wrist-mounted RGB camera. By
pointing the camera towards the body, it can capture body silhouettes, which are learned by a customized deep
learning model to infer the full body poses. A user study demonstrated that it can track full-body poses with an
average of 6.89 cm. Given the miniature RGB camera is already embedded in many smartwatches, BodyTrak has
the potential to be deployed in future smartwatches. We discuss the opportunities and challenges associated with
deploying our system and implementing it in real-world scenarios.
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