
62
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This paper presents EarIO, an AI-powered acoustic sensing technology that allows an earable (e.g., earphone) to continuously
track facial expressions using two pairs of microphone and speaker (one on each side), which are widely available in commodity
earphones. It emits acoustic signals from a speaker on an earable towards the face. Depending on facial expressions, the
muscles, tissues, and skin around the ear would deform differently, resulting in unique echo profiles in the reflected signals
captured by an on-device microphone. These received acoustic signals are processed and learned by a customized deep
learning pipeline to continuously infer the full facial expressions represented by 52 parameters captured using a TruthDepth
camera. Compared to similar technologies, it has significantly lower power consumption, as it can sample at 86 Hz with
a power signature of 154 mW. A user study with 16 participants under three different scenarios, showed that EarIO can
reliably estimate the detailed facial movements when the participants were sitting, walking or after remounting the device.
Based on the encouraging results, we further discuss the potential opportunities and challenges on applying EarIO on future
ear-mounted wearables.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile devices; • Hardware→ Power and energy.

Additional Key Words and Phrases: Facial expression reconstruction, Acoustic sensing, Low-power, Deep learning

ACM Reference Format:
Ke Li, Ruidong Zhang, Bo Liang, François Guimbretière, and Cheng Zhang. 2022. EarIO: A Low-power Acoustic Sensing
Earable for Continuously Tracking Detailed Facial Movements. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 2,
Article 62 (June 2022), 24 pages. https://doi.org/10.1145/3534621

1 INTRODUCTION
Humans use facial movements/expressions to interact with the world by conducting physical activities (e.g., eating,
drinking), expressing feelings (e.g., emotion [29]) and communicating non-verbal information (e.g., silent speech
recognition [43]). Thus, in order to interpret human behaviors in detail, the first step is to continuously record
the detailed facial movements at any location and any time. Existing facial movements tracking technologies are
largely based on using a frontal camera to capture the complete face of the user, which is not portable. To address
this challenge, multiple wearable-based facial expression recognition technologies have been developed. However,
most of them can only recognize discrete facial gestures instead of tracking the full facial movements continuously.
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Fig. 1. Designed Facial Expressions and Corresponding Differential Echo Profiles

The most recent work showed the feasibility of continuously tracking facial movements using cameras [4, 5] or
bioSensors (e.g., EOG/EMG) [38]. Despite promising tracking performance, it is hard to apply these technologies
on a daily wearable device due to their cumbersome dimension (e.g., [38] requires electrodes to be attached on
face), or high power consumption [4, 5]. As a result, it is currently impossible to apply these sensing systems
on a commodity earable device (e.g., earphone), which has very limited size, sensing modality, and battery life.
There is a clear need for a low-power and minimally-obtrusive sensing method that can potentially be embedded
on earables without compromising the performance on sensing facial movements.

We present EarIO, the first very low-power and minimally-obtrusive active-acoustic sensing technology, that
uses the machine learning method to continuously infer detailed full facial movements from the subtle skin
deformations. Our technology only requires one speaker and one microphone on each side of the earable, which
are widely available on many modern earphones (e.g., Apple PowerBeats Pro1). The speaker on each earable
emits encoded acoustic signals (Frequency-Modulated Continuous-Wave, FMCW) towards the user’s face. These
acoustic signals are reflected differently to a microphone based on the skin deformation associated with different
facial movements. The received acoustic signals are first decoded and processed to extract the echo profiles around
the face, which are then learned by a customized deep learning model to estimate the full facial expressions.
Because our system only requires a pair of microphones, a pair of speakers and a BLE module, it can sample
facial movements at 86 Hz with a power signature as low as 154mW, which is 25 times lower than the previous
wearable camera-based sensing system [4]. Using a LiPo battery of 110 mAh , our system can last for about 3
hours. A user study with 16 participants showed that EarIO can continuously and accurately estimate facial

1https://www.beatsbydre.com/earphones/powerbeats-pro

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 62. Publication date: June 2022.

https://www.beatsbydre.com/earphones/powerbeats-pro


EarIO: A Low-power Acoustic Sensing Earable for Continuously Tracking Detailed Facial Movements • 62:3

movements under a variety of daily scenarios, including sitting, walking, and remounting the device. Besides, we
also discuss the challenges and opportunities of applying this novel sensing technology on commodity earables,
such as earphone, headphone, and glasses.
We summarize the contributions of the paper below:
• We present the first acoustic-based earable sensing method that can estimate the full facial movements
continuously from subtle skin deformations.

• We designed a minimally-obtrusive form factor and optimized the power consumption of the system, so
that it can operate at 86 Hz with a lower power signature of 154 mW.

• We conducted a user study of 16 participants, of which the results showed that our system can accurately
estimate the facial movements under different scenarios including sitting, walking and after remounting
the device.

• We discussed the opportunities and challenges on applying this low-power sensing technology on the next
generation of earables.

2 RELATED WORK
In this section, we examine previous research projects that are related to EarIO in the following scopes: 1) frontal
camera-based facial expression tracking methods, 2) wearable-based facial expression tracking technologies, and
3) acoustic-based wearable human activity tracking systems.

2.1 Frontal Camera-based Facial Expression Tracking
Frontal cameras have been widely used as the major approach to capture human facial expressions by capturing
the face of the user. These methods usually deploy cameras [11, 28, 30, 32, 36] in front of the user’s face and utilize
various computer vision (CV) technologies [6, 9, 12, 14, 16, 19, 20, 27] for facial expression representation such
as 2-dimensional (2D) facial landmarks tracking [15, 37]. Recent advancement in CV and AR/VR technologies
makes more accurate and subtle 3D tracking possible. For instance, Apple’s ARKit provides blendshape-based 3D
facial expression representation and visualization API using its TrueDepth camera. We utilize this technology as
our ground truth acquisition method which we will elaborate in Subsubsec. 4.4.1.

These frontal camera-based methods have provided reliable tracking performance and have been widely used
as ground truth by other facial expression tracking systems [4, 5, 38]. However, they require the users to be
present in front of a camera at all times, which clearly does not work when the user is in motion. Furthermore,
the performance can be significantly impacted by issues like light conditions, occlusions, etc. The high-energy
consumption of cameras makes it challenging for them to be deployed on commodity earables, which have
extremely limited battery life and processor power.

2.2 Wearable Facial Expression Tracking
To conquer the challenges that frontal facial reconstruction methods encounter, researchers have put their efforts
into developing wearable devices to estimate facial expressions. These methods usually focus on attaching sensors
on users’ head to track physical or bio signals while users perform different facial expressions. These signals
include electromygraphy (EMG) and/or electrooculography (EOG) [8, 38], skin deformation [3–5, 17] or eye
movement [10] tracked by cameras, acoustic [13, 39], or capacitive [26] sensors, and canal deformation tracked by
barometers [1] or motion sensors [33]. However, most of these technologies can only distinguish several discrete
facial expressions instead of continuously tracking detailed facial movements. The most recent work (C-Face [5],
NeckFace [4] and BioFace-3D [38]) have shown the possibility of estimating facial expressions continuously on
neck- or ear-mounted wearables. However, C-Face and NeckFace use cameras which are not only power-hungry
(e.g., NeckFace operates at 4W, 25 times higher than EarIO) but potentially raise privacy concerns by capturing
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images of the user and the surrounding environment. In contrast, BioFace-3D consumes relatively lower energy
but requires attaching multiple electrodes on the face with a relatively large form factor, making it potentially
uncomfortable to wear in daily activities.
Apparently, there is a clear need for a very low-power and minimally-obtrusive earable sensing technology

that can estimate full facial expressions continuously in daily activities.

2.3 Active Acoustic Sensing and its Applications in Wearable Human Activity Tracking
Being contact-less, low-power and ubiquitously available on commodity devices, active acoustic sensing has been
used in a variety of wearable computing applications. Active acoustic sensing technologies have been demonstrated
in applications such asmotion tracking [18, 45], silent speech recognition [21, 44], gesture tracking [2, 23, 31, 35, 40–
42], breathing detection [34], sleep apnea detection [22], etc. However, using active acoustic sensing to estimate
facial expressions is under-explored. The closet work is conducted by Xie et al. [39] demonstrating the feasibility
of using acoustic sensors on a smart eyewear to recognize 6 discrete upper facial expressions.

To the best of our knowledge, EarIO is the first earable sensing technology that uses active acoustic sensing to
estimate full facial movements from subtle skin deformations continuously. It only needs one pair of speaker
and microphone on each side, which are already widely available on commercial wearable devices. Compared
with previous work, EarIO provides reliable and high-resolution facial movement tracking performance under
different daily scenarios (walking, sitting, remounting) with a very low power signature (86 Hz and 154 mW).

3 THEORY OF OPERATION
The goal of EarIO is to provide a low-power and minimally-obtrusive sensing method for earables to track detailed
facial movements continuously. It is inspired by C-Face [5], which first demonstrated promising performance
to infer the full facial expressions from facial contours captured by miniature cameras on earables. However,
deploying cameras on earables can be very challenging, because cameras have relatively large size compared
to the size of earables (e.g., earphone), consume a significant amount of energy, and require high bandwidth to
transmit and process the data in real-time.

EarIO intends to build on the sensing principle demonstrated by C-Face, that the subtle skin deformation can
be highly informative to infer the full facial expressions. Instead of using cameras to capture the contour of the
face, EarIO proposes to replace cameras with active acoustic sensing units to capture the subtle skin deformations.
Using active acoustics to sense the shape or distance of an object has been previously demonstrated on other
applications, such as motion tracking [18, 45] and breath detection [34]. Compared to cameras, acoustic hardware
(e.g., microphone and speaker) are not only widely available on commodity wearables, but also have much smaller
dimension, generate smaller size of data, and consume significantly lower power.
To demonstrate the feasibility of such sensing principle, one researcher performed several facial expressions

while attaching a pair of speaker and microphone on each side of earphones. We recorded the skin deformation
as captured by cameras and by microphones. We then used one of the methods (Echo Profile on FMCW signal,
detailed in later sections) that we explored to analyze the echos. We illustrate such process in Fig. 2. It is clear
that, with our data analysis method, the skin deformations during facial expressions lead to clear pattern changes
in the captured acoustic echos.

4 DESIGN AND IMPLEMENTATION OF EARIO
In this section, we present the design and implementation on the hardware and algorithms of EarIO. The design
principles of EarIO are to design the minimally-obtrusive form factor and optimize the power consumption in
the whole system including sensors and data transmission. As a result, the EarIO prototype uses customized
printed circuit boards (PCBs) to house the micro-controller, microphones and speakers to optimize the device size
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Fig. 2. Verifying the Theory of Operation of EarIO

and the power consumption. A customized deep learning algorithm is developed to learn the skin deformation
patterns from the Echo Profiles extracted from FMCW-based acoustic signals. We detail each component of EarIO
in the following subsections.

4.1 Hardware Prototype
In order to minimize the size and optimize the power consumption, we designed our own form factor, fine-tuned
the sensing solutions, and customized the PCB for our prototype.

4.1.1 Form Factor Design. The goal of the form factor design is to demonstrate that EarIO can be embedded to a
form factor that is highly similar to the commodity ear-mounted wearables. We started by 3D printing the whole
earable, with a shape looking similar to PowerBeats Pro. However, we realized that 3D printed materials are
relatively rigid and hard to fit different people’s ear size. Therefore, instead of 3D printing all parts, we decided to
customize the commodity earphones to house the hardware components (battery, micro-controller, sensors) so
that we could take advantage of the form factor on commodity earphones which are designed to fit ears with
different sizes. We first designed a 3D printed supporting board, where we attached the microphone and speaker
on. The 3D printed board was glued to the side of the commodity earphone. Then we replaced the electronic
components from the earphone with our customized PCBs (except the battery). As demonstrated in Fig. 3, our
final prototype is highly similar to the original earphone except a small extension with the core acoustic sensing
unit.
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Fig. 3. Customized PCBs and Form Factor of EarIO. (a) Speaker board. (b) Microphone board. (c)-(d): Bottom and top layers
of the PCB. (e) Form factor design of EarIO. (f) EarIO as an earable. Components on the customized PCB: (1) SGW1110
BLE module, (2) MAX98357A audio amplifier, (3) Speaker socket, (4) Downloading and debugging port, (5) TPS62065 switch
regulator module, (6) Battery socket, (7) Microphone socket.

4.1.2 The Wired Prototype. In order to validate our system as well as providing more flexibility in exploring
various configurations, we first designed a wired prototype. The core sensing unit of EarIO consists of a MEMS
microphone (ICS-434342) and a speaker (OWR-06944T-16B3). We designed a customized PCB with 2 SGTL5000
audio codecs4 for support of connecting up to 4 speakers and 4 microphones. This customized PCB is connected
to the speakers and microphones in our system and then communicates data to the micro-controller (1 Teensy
4.15) through the Inter-IC Sound (I2S) interface operating at 44.1 kHz. An on-board SD card is used to save all
acoustic data on the micro-controller.

4.1.3 The Wireless Prototype. The wired prototype is great for verifying the sensing principle. However, in order
to simulate the operating environment for a commodity earphone, we implemented a wireless prototype which
transmits acoustic data to a smartphone in real-time. In order to minimize the power consumption, we chose
Bluetooth Low-Energy (BLE) as our wireless data transmission solution. We use an SGW1110 6 module with
nRF52840 7 micro-controller for BLE communication, acoustic signal transmission and reception. The micro-
controller is connected to two MEMS microphones directly (ICS-43434) and drives two speakers (SR6438NWS-000
8) via a MAX98357A audio amplifier 9. Similar to our wired version, all amplifiers and microphones are connected
to the same I2S interface using the clocks provided by the hardware PWM module of the micro-controller, which
guarantees that their sampling rates are exactly the same. Due to limited options for clocks, we were not able to
obtain a 44.1 kHz or 48 kHz sampling rate. Instead, we configured the system to operate at 50 kHz. The wireless
data collection system was implemented on a customized miniature PCB (10.4 mm × 20 mm), powered by a small

2https://invensense.tdk.com/products/ics-43434/
3https://owolff.com/page140.aspx?recordid140=1278&output=pdf&delay=3000&margin=1cm
4https://www.nxp.com/products/audio-and-radio/audio-converters/ultra-low-power-audio-codec:SGTL5000
5https://www.pjrc.com/store/teensy41.html
6https://www.sgwireless.com/product/SGW111X
7https://www.nordicsemi.com/Products/nRF52840
8https://www.knowles.com/docs/default-source/model-downloads/sr6438nws-000.pdf?Status=Master&sfvrsn=212b75b1_0
9https://www.maximintegrated.com/en/products/analog/audio/MAX98357A.html
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LiPo battery. The PCB has an on-board switch-regulator TPS6206510 for high-efficiency power management. The
FMCW sequence length was changed to 600 optimized for BLE transmission.

We evaluated EarIO in both wired and wireless prototypes in our user study, which will be detailed in the later
sections.

4.2 FMCW-based Acoustic Sensing for Detecting Skin Deformations
4.2.1 Comparing Active-acoustic Sensing Methods. In order to estimate distance or human activities, researchers
have developed various acoustic-based sensing approaches including phase changes [31, 35, 45], angle of ar-
rival (AoA) [7], Doppler effect [2, 21], channel impulse response (CIR) [41, 44], and FMCW [22, 34]. Among
these techniques, we compared three types of acoustic sensing signals, which have demonstrated promising
performance on other work. They are 1) 20 kHz chirps, 2) CIR with GSM sequence [41, 44], 3) FMCW [22, 34]. In
order to evaluate the performance on estimating facial expression from skin deformations, we compared these
three types of signals in a preliminary study, where one researcher collected similar facial movement data for each
type of signals in different scenarios. These collected data were decoded and processed first, then sent to the same
deep learning algorithm to estimate the full facial movements. The details of the algorithms will be described in
the next subsections. The results in Tab. 1 evaluated with the metrics introduced in Subsubsec. 4.4.3 showed that
FMCW presented the best performance among the three methods, especially in cross-session scenarios where
users remount the device. Thus, we decided to use FMCW in EarIO to sense the skin deformations.

Table 1. Performance of Three Different Transmitted Signals

Transmitted Signal In-Session Cross-Session

MAE LMAE UMAE PL40 PU60 MAE LMAE UMAE PL40 PU60
Chirp 25.6 18.7 37.6 91.5% 83.2% 27.7 19.6 41.7 90.1% 79.0%
GSM 20.7 16.1 28.8 93.7% 89.6% 23.8 17.0 35.6 92.0% 85.2%
FMCW 20.6 14.7 30.9 96.6% 88.3% 19.2 12.5 30.9 95.4% 88.0%

4.2.2 Generating FMCW Signals. Since EarIO uses an active acoustic sensing method, we need to first generate
FMCW signals for the speaker. The frequency of FMCW changes with time linearly. Hence, to generate an FMCW
signal, we need to determine a frequency range that the signal would be sweeping within. Because we would
like to deploy the system on an ear-mounted device and track users’ facial expressions in their daily lives, we
chose the frequency range 16-20 kHz which is inaudible to most people and also supported by most commodity
microphones and speakers. As a result, our EarIO system generates the FMCW signal, sweeping from 16-20 kHz
at a sampling rate of 44.1 kHz. To achieve a reasonable resolution of tracking facial expressions, we set the period
of FMCW to be 512 samples which is around 11.6 ms (512 samples / 44.1 kHz). In this case, we have around 86
sweeps per second. In the wireless prototype, the period is changed to 600 samples in accordance with its 50 kHz
sampling rate and BLE transmission considerations. However, The period of FMCW can be potentially revised to
lower the estimation sampling rate of our system to save battery. The spectrogram of the transmitted FMCW
signal that we generated is shown in Fig. 4 (a).

4.2.3 Calculating Echo Profile from FMCW Signals. The FMCW signal is fed into the speaker, which emits the
signals towards the face. A microphone on the same board with the speaker receives the reflected acoustic signals
(echos) via multiple paths. EarIO analyzes the reflected signals by performing cross-correlation between echos
and the transmitted signals, which reflects the distance of the reflecting medium to the sensors [34]. For targets
10https://www.ti.com/product/TPS62065
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Fig. 4. Overview of the Transmitted and Received Signals and Echo Profile Analysis

that do not move too fast, the cross-correlation has the same period as the transmitted signal [22, 34]. We denote
the cross-correlation in such a period as an echo frame. Using cross-correlation-based FMCW as descried in [34],
a 44.1 kHz sampling rate allows us to reach a resolution of around 0.77 cm (340 m/s / 44.1 kHz), with a maximum
theoretical range of 395 cm [34]. Because the speakers and microphones are co-located, the resolution is actually
the minimum round-trip distance that the system is capable of distinguishing. Therefore, the one-way resolution
we can get is about 0.385 cm with 197 cm range, which we believe is enough to detect even subtle movements of
facial muscles. With sequence length being 512 samples, an echo frame is a 1024-dimension vector (2 channels
stacked together). However, only a smaller portion of them contain useful information about the face since the
distance between our device and the skin is usually smaller than 15 cm. Furthermore, by limiting the echo profile
to 15 cm, we can remove reflections from objects further away which are useless to our system. As a result, we
clip an echo frame to 200-dimension to focus on objects at a closer distance. By repeatedly sending FMCW frames,
we could get a figure of multiple consecutive echo frames that vary in time. This figure that demonstrates the
change of echo frames in the time domain is called Echo Profile. Using similar methods as described in [34], we
calculate the zero-position using the direct path, which is the shortest and strongest path where the signal travels
in the 3D-printed board.
We display the Echo Profiles for two different facial expressions, Open Mouth and Sneer Right in Fig. 2. As is

shown in Fig. 2, the Echo Profiles for different facial expressions are visually different. For instance, if we only
move one side of our face, like Fig. 2 (b), we can see a stronger pattern on the right channel of our system. There
are also some patterns in the left channel because the muscles on our face are interconnected and when we try to
sneer right, the left side will also move, but less significantly than the right side.
In addition to using the original Echo Profile, we calculate the Differential Echo Profile by calculating the

difference between two consecutive Echo Profiles. As Fig. 4 (e) shows, the Differential Echo Profile has higher
signal-to-noise ratio (SNR) because it subtracts the static noise in the background and only focuses on the patterns
of facial movements on each facial expression. We also discovered that the Differential Echo Profile is especially
more effective when the user remounts the device because after the device is remounted, the position of the sensor
shifts, which leads to visually different Echo Profiles. However, these differences are usually constant which can
be mostly removed by calculating the Differential Echo Profile. Furthermore, we compared the performance of
the system in a pilot study under three conditions: 1) original Echo Profile, 2) Differential Echo Profile, 3) original
Echo Profile + Differential Echo Profile. The result also showed that Differential Echo Profile has the most robust
performance among different scenarios. Thus, we decided to use Differential Echo Profile in EarIO.

The patterns in the Differential Echo Profiles that we observed convinced us that a machine learning algorithm
may be able to estimate different facial movements based on Differential Echo Profiles.
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4.3 Optimizing Wireless Data Transmission
Among common wireless solutions, WiFi provides highest bandwidth. However, its high power consumption
makes it not practical for earables. In contrast, traditional Bluetooth solutions consume less power, but is still
high for wearables. For optimized power performance, we chose BLE as our wireless data transmission solution,
which is widely used in commodity wearables. However, the challenge of BLE solution is that the bandwidth is
relatively limited. Therefore, we have to optimize EarIO data transmission process for BLE.
BLE 5.0 protocol supports 2M PHY, which in practice supports up to about 1.4 Mbps data throughput rate11.

However, it is still not enough to transmit data for two 16-bit microphones sampling at 50 kHz. Moreover, in
order to reduce power consumption as well as allowing sufficient margin over long-term operation, we prefer to
limit the bit rate to below 1 Mbps. Therefore, we tried to reduce the depth of the samples hypothesizing that
FMCW signals combined with long-sequence cross-correlation algorithm make the system insensitive to sample
depth loss. To verify this, we collected 16-bit data using our wired data collection system. Then we downsampled
the 16 bits raw signal to 2-12 bits and ran an end-to-end evaluation for each configuration on the facial expression
tracking performance using the same metrics as used in our user study which will be described in Subsubsec. 4.4.3.
The results in Fig. 5 demonstrate that the performance quickly increases from 2 to 4-5 bits and flattens at 6-7 bits
sample depth. Based on these results, we chose 8 bits sample depth, which requires a bit rate of 800 kbps for the
real-time data transmission at 50 kHz sampling rate. This transmission setting allows us to transmit data from
two microphones using BLE 5.0 without compromising tracking performance.

(a) P6, cross-session (b) P7, in-session

Fig. 5. Impact of Sample Depth on Tracking Performance. Experiments conducted on P6’s cross-session data which is among
the worst, and P7’s in-session data which has the best performance among all participants. MAE drawn on the left axis,
percentages on the right.

4.3.1 BLE Packet Loss Analysis. High throughput BLE data transmission often suffers from packet loss issues.
Taking potential bandwidth fluctuations into consideration, we created a long buffer on the micro-controller for
a smoother data transmission. We made the most of BLE 5.0’s extended ATT MTU size and set each BLE packet
at 244 bytes. In order to keep track of all lost packets, we used a 4-byte header in each BLE packet indicating its
order. Combined with reduced bandwidth requirement, we were able to keep the packet loss rate at 0.035% (1621
out of 4658373) during all wireless data collection sessions. An analysis on all lost packets shows that 98.7% of
data loss were caused by buffer running out, indicating occasional lack of sufficient bandwidth, while only 1.3%
were lost during transmission (sent but never received).
11https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsds_s140%2FSDS%2Fs1xx%2Fble_data_throughput%2Fble_data_throughput.html&
cp=4_7_4_0_16
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4.4 The Deep Learning Algorithm
4.4.1 Ground Truth Acquisition Method. To ensure ground truth quality, we adopted the TrueDepth camera
on an iPhone with ARKit API as the ground truth acquisition system, which is similar to the prior work [4].
It uses 52 blendshapes to represent the shapes of the mouth, nose, eyes, eyebrows, cheeks, etc. Compared to
2D landmark-based ground truth of facial expressions, this ground truth acquisition method provides higher
resolution and richness on representing facial movements, as it can model 3D movements. Furthermore, it allows
us to easily render the facial expressions on Unity which helps us to visualize our results for quick analysis and
comparison.

4.4.2 Deep Learning Model. Considering that the distance of our module to the skin is usually below 10 cm, also
preserving sufficient margin, we first crop out the 100 pixels at the center of each channel (equivalent to about ±
19.75 cm from the module) and remove the rest. We then concatenate two channels vertically. After this step,
each echo frame is reduced to a 1x200 vector. Please note that we use the Differential Echo Profile instead of
original Echo Profile in training as discussed in the previous subsection. The temporal patterns of echo frames
are highly informative to estimate facial movements. Therefore, instead of using the Echo Profile from one frame,
we use the Differential Echo Profiles from one second (87 frames) to train the model. This results a feature vector
with a dimension of 200 × 87, which is then sent to an end-to-end convolutional neural network (CNN) with
ResNet-34 as the backbone and a fully-connected decoder to learn the facial expressions. The backbone extracts a
feature vector with the dimension of 512. This new feature vector then goes through an average-pooling layer, a
two-layer fully-connected regression network with dropout probability of 0.5, and output dimension of 52 to
estimate the 52 blendshape parameters. To force the model to pay more attention to more active facial expressions
(facial expression with more movements), we use mean squared error (MSE) loss so that the model can put heavier
weights on the facial expression frames with larger movements (which usually leads to larger error). The mean
absolute error (MAE) is used as the main evaluation metric. We use the Adam optimizer and set the learning rate
at 0.01. The model is trained for 30 epochs.

4.4.3 Evaluation Metrics. As it was done in the past NeckFace [4] to efficiently evaluate the performance of our
EarIO system, we adopt MAE as the main evaluation metric. As explained in Subsec. 4.4.1, we use 52 blendshapes
from Apple ARkit API to represent any facial expression. As a result, we calculate the MAE between the 52
parameters predicted by our model and also generated by the TrueDepth camera of an iPhone 12. This is the overall
MAE of all frames that we collect. From NeckFace [4] we know that while the MAE is below 40, the prediction
is usually highly similar to the ground truth in visual. While NeckFace also reports the Active MAE (AMAE)
to reflect the performance of active frames, we discovered that this approach did not work well in practice as
it was difficult to settle on a proper activity threshold. Looking closer at our data we also discovered that the
correspondence between a given value of MAE and the perceived visual difference of an expression was quite
different when considering the lower and the higher parts of the face as shown Fig. 6.

Hence, we decided to separate the 52 blendshapes into two parts. For the upper face part we included all the 19
parameters related to eyes and brows, and the remaining 33 parameters for the lower face. We then calculated
different MAEs for lower face parameters and upper face parameters, which are called Lower Face MAE (LMAE)
and Upper Face MAE (UMAE). As we can see in the figure, when LMAE is lower than 40, the prediction of the
lower face is highly similar to the ground truth visually. With respect to UMAE, this value is close to 60. Through
the evaluation section we will use these values a reference point and we will report the Percentage of Frames
with LMAE under 40 (PL40) and Percentage of Frames with UMAE under 60 (PU60) as well. We believe that
this approach better reflects the actual performance of the system, and also allows for an easy comparison with
previous work that also reported the MAE.
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Fig. 6. Visualization Results with Different MAE for both Lower Face and Upper Face. The maximum MAE for closing eyes is
much larger than other three expressions so we draw this figure using a different scale.

5 USER STUDY
In this section, we first present the goal and design of the user study. We then talk about the studies that we
conducted in detail.

5.1 Study Objective
We conducted a user study in order to evaluate EarIO’s effectiveness in continuously tracking full facial expressions.
To validate the viability of our system we decided to first evaluate the system in a sitting configuration so that
we could have a better control of the different parameters which might affect the performance of the system. We
then extended the external validity of our finding by studying our system in a walking scenario to examine how
EarIO would perform while the user was in motion.

5.2 Facial Expressions
We designed 9 types of different facial expressions to test EarIO, which we believe most movements of the
facial muscles that people would do in their daily lives were covered when users were performing these facial
expressions. The 9 different types of facial expressions and their corresponding Differential Echo Profiles are
shown in Fig. 1. These expressions are designed to focus on different areas of the face, including lower (e.g.,
mouth, jaw) and upper (e.g., eyes, eyebrow) face. Note that these expressions are used as instructions to the
users, but our goal is to evaluate how EarIO continuously tracks not only the expressions but also the transition
between them. In particular, the fact that participants might not follow the provided instructions will have little
impact on our evaluation as our system is not focusing on recognizing specific expressions.

5.3 Apparatus
5.3.1 Sitting Scenario. We used the wired prototype described in Subsubsec. 4.1.2 for the sitting scenario study
to validate our EarIO system. Before the study, we 3D printed a case to hold the Teensy 4.1 and the power bank
which powered the system. The participants needed to wear this case like a necklace during the study so that the
whole system was completely wearable.

In order to record the ground truth of facial expressions, and play the instruction video to the participants
as well, we used an iPhone 12 with the TrueDepth camera to realize these purposes. A stand was used to hold
the iPhone 12 in front of participants. In the instruction video, we repeated the 9 facial expressions that we
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introduced in Subsubsec. 5.2 multiple times, in a completely random order. The participants would just follow
the instruction video and try to mimic whatever facial expressions they saw.

What is more, we were also using cameras to record videos of the participants from different angles during the
study so that we could get a clear view of how the participants were wearing the device and performing different
facial expressions, which helped us analyze the results of the study in a better and more efficient way.

5.3.2 Walking Scenario. For the walking scenario, participants would wear the EarIO device the same way as
they did in the sitting scenario. The way how we held the iPhone 12 to record the ground truth and play the
instruction video was different because the participants would need to wear a chest mount device to keep the
smartphone in front of their face while walking. We did not have multiple cameras recording videos of the
participants from different angles in the walking scenario because it would be hard to do this while participants
were walking.

5.4 Study Procedures
5.4.1 Sitting Scenario. For the sitting scenario, the study was conducted in a small experiment room on campus.
After the participants came in, and signed the consent form, we introduced the basic procedures of the study to
them. Then participants were asked to sit on a chair with a stand holding the iPhone 12 on a table in front of
them. Then the participants were instructed to wear the EarIO device as they usually did when wearing a pair of
sports earphones. They also wore a case holding the Teensy 4.1 and the power bank, as a necklace.
If needed, we would adjust the angle of speakers and microphones to point them directly at the skin of the

user in order to get stronger reflection of signals and clearer patterns. Because long hair may cover the speakers
and microphones, having a severe impact on the experiment results, we asked the participants with long hair to
use a hair tie to put their hair up during the study. Furthermore, because sometimes the TrueDepth camera is not
capable of tracking the eye movement of users with eyeglasses, we also asked participants wearing glasses to
remove them and all these participants reported that they were still able to see the instructions. However, our
EarIO system itself does not require users to remove their glasses while in use. After finishing setting up the
device, we started the study. Throughout the study, the participants followed the instruction video on the screen
of the smartphone. The same smartphone was recording the ground truth of facial movements as well.

Before we started the official study, we had a short 1-minute practice section, which could help participants to
get familiar with the study procedure and the facial expressions they were going to perform. Then the study
started with the in-session section during which the device was not remounted at all, followed by the cross-session
section during which the device was remounted between sessions.

For the in-session section, the participants followed the instruction video to perform multiple facial expressions
without remounting the device. In-session section had 6 sessions of facial expressions in total, each one of which
contained 6 repetitions of the 9 facial expressions that we designed in Subsec. 5.2. That means we had 324 facial
expressions in total (6 sessions × 6 repetitions × 9 facial expressions). In our setting, each facial expression lasted
2 seconds in the instruction video, which means each session (54 facial expressions) lasted for 120.6 seconds
including some grace time between two expressions. Therefore, the in-session section lasted for around 12
minutes (6 sessions × 120.6 seconds). Before and after the in-session section, we asked the participants to clap
their hands in front of the smartphone which would help us synchronize our EarIO system and the ground truth
acquisition system.

After the in-session section, the participants were instructed to take off the device and take a break. Following
the break was the cross-session section, which included 20 sessions and each session also had 54 facial expressions,
same as what has been described above. In this case, we had 1080 facial expressions (20 sessions × 6 repetitions
× 9 facial expressions) and 40.2minutes (20 sessions × 120.6 seconds) in total for the cross-session section. Before
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each session, the participants were also asked to clap their hands for the synchronization purpose. After each
session, the participants remounted the device and took a short break.
All these facial expressions were shown in a completely random order and were in a different order for each

session of each participant.

5.4.2 Walking Scenario. This part was conducted in a large room next to the small experiment room, which
provided a larger space for the participants to walk around while performing the facial expressions. In this part,
the participants were given the same instruction and follow the same procedures to collect both in-session and
cross-session data, as described above in Subsubsec. 5.4.1. The only difference was that the participants were
required to walk around at their normal speed of their everyday lives in a larger experiment room while they
were performing the facial expressions. In this part, they wore a chest mount which could hold the smartphone
playing the instruction video and collecting the ground truth data in front of them while they were walking.

5.5 Participants
We recruited 12 participants (7 females and 5 males, ranging from 19 to 26 years old) for the sitting scenario. The
study was conducted throughout different time of the day, including mornings, afternoons and evenings. We
collected 12.43 hours of audio data, and corresponding ground truth files captured at a frame rate of 30 FPS.
Because of the duration of the study, the walking scenario was conducted at a different time from the sitting

scenario. Because of the attrition to be expected in this setting, we were only able to capture the data for 7
participants (3 females and 4 males) who took part in both sitting and walking scenarios of our user study. This
group is of particular value as it gives us the opportunity to compare performance of sitting and walking scenarios.
We also recruited 3 new participants for a total of 10 participants (4 females and 6 males, ranging from 19 to 26
years old) for the walking scenario. 10.41 hours of audio data and corresponding ground truth files were collected
from all 10 participants in this part of the study.

5.6 Follow-up Study with Wireless Prototype
We conducted a follow-up study with our wireless prototype to confirm that the wireless version of our EarIO
system is capable of working comparably with the wired version with a much lower energy consumption.
Since the wireless prototype is almost the same as the wired prototype except that the data collection and

streaming methods are different, we only ran the study on a small scale of participants and only tested the
system in the sitting scenario to confirm that the system was collecting and transmitting data reliably. We used
3 participants (2 participants from the previous study and 1 new participant, 2 females and 1 male). For this
follow-up study, we collected 3.11 hours of audio data and corresponding ground truth files.

6 EVALUATION

6.1 Results
In Fig. 7, we plotted both LMAE and UMAE for all participants under all circumstances. As shown in the figure,
the LMAE (blue bars) for all participants are always under 40 while the the UMAE (red bars) are always under
60, which means that the prediction of our EarIO system is visually highly similar to the ground truth for all
participants according to Subsubsec. 4.4.3. For better reference and comparison, we also listed a summary of the
aggregate results for in-session and cross-session performance under both sitting and walking scenarios of our
user study in Tab. 2.

6.1.1 In-session Evaluation. We first evaluated our system’s performance in in-session settings. We conducted
a 6-fold cross-validation on all 6 sessions that we collected without remounting for each participant, and used
the evaluation metrics described in Subsubsec. 4.4.3. This means that for each participant, we used about 18090
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(a) Sitting scenario (b) Walking scenario

Fig. 7. Lower-face MAE (LMAE) and Upper-face MAE (UMAE) for All Participants with In-session and Cross-session Setups

Table 2. Evaluation Results for In-session and Cross-session Performance while Sitting and Walking. Results are presented in
the format of Mean | Standard Deviation.

Evaluation Metrics In-Session Cross-Session

Sitting Walking Sitting Walking
MAE 24.6 | 7.5 32.1 | 7.3 25.9 | 6.0 33.9 | 7.8
LMAE 21.2 | 6.5 27.9 | 7.5 21.8 | 6.2 28.6 | 8.1
UMAE 30.5 | 9.6 39.3 | 7.6 33.1 | 6.5 43.1 | 8.7
PL40 85.8% | 7.9% 78.3% | 8.6% 84.8% | 7.2% 77.7% | 9.7%
PU60 87.0% | 6.3% 81.7% | 5.6% 85.5% | 4.3% 78.8% | 7.0%

samples (5 sessions × 120.6 seconds × 30 FPS), each of which has a dimension of 200 × 87 to train the model (see
Subsubsec. 4.4.2 and Subsec. 5.4). In the sitting scenario, results show that the MAE ranges from 13.8 to 38.0 across
different participants with an average of 24.6 (𝑠𝑡𝑑 = 7.5). LMAE is relatively lower at 21.2 while UMAE is 30.5. In
our predictions, PL40 equals 85.8% while PU60 is 87.0% (Fig. 8 (a)). These results demonstrate the capability of
EarIO in tracking full facial expressions.

Performance slightly drops but remain consistent in the walking scenario. The MAE ranges from 21.3 to 39.9
across all participants with an average of 32.1 (𝑠𝑡𝑑 = 7.3). Besides, LMAE and UMAE are 27.9 and 39.3 respectively.
In our predictions, PL40 is 78.3% and PU60 is 81.7% (Fig. 8 (c)). These results demonstrate EarIO’s ability to track
facial expressions while users are in motion. While the user is walking, user’s steps cause the sensor as well as
the participant’s head to slightly shake and displace. The objects in the background also changes as the user
moves. These effects cause noises in the calculated Differential Echo Profiles, thus resulting slightly decreased
performance. However, even with these drawbacks, EarIO still achieves consistent performance, demonstrating
its adaptability to motion noises.

6.1.2 Cross-session Evaluation. We evaluated EarIO’s cross-session performance to examine its robustness to
remounting, which is very common in daily usage. Similar to the in-session evaluation, we conducted a 5-fold
cross-validation on all 20 sessions that we collected with remounting for each participant. This means that for
each participant, we used about 57888 samples (16 sessions × 120.6 seconds × 30 FPS) to train the model. In
the sitting scenario, MAE averages 25.9 across 12 participants (𝑠𝑡𝑑 = 6.0,𝑚𝑖𝑛 = 18.1,𝑚𝑎𝑥 = 37.8). LMAE and
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(a) Sitting (in-session) (b) Sitting (cross-session) (c) Walking (in-session) (d) Walking (cross-session)

Fig. 8. MAE CDF. Blue Lines: LMAE. Red Lines: UMAE. Solid Lines: Overall CDF. Pale Lines: CDF For Each Participant.

UMAE are 21.8 and 33.1, respectively. PL40 and PU60 are 84.8% and 85.5% respectively (Fig. 8 (b)). We ran a
one-way repeated measures ANOVA test to compare the in-session and cross-session performance in the sitting
setting and we did not find a statistically significant difference (𝐹 (1, 22) = 1.04, 𝑝 = 0.33 > 0.05). Besides, we also
calculated the effect size between these two groups. The Cohen’s𝑑 reflects a very small effect size (𝑑 = 0.196 < 0.2)
leading us to conclude that there is only a negligible performance difference between in-session and cross-session
experiments in this setting. This suggests that our approach is resilient to device remounting in our sitting tests.
We found similar results for the cross-session performance while walking. As expected the performance of

cross-session decreases compared to the in-session performance. Under this scenario, MAE averages 33.9 for
cross-session (𝑠𝑡𝑑 = 7.8,𝑚𝑖𝑛 = 20.9,𝑚𝑎𝑥 = 43.6). The LMAE and UMAE are 28.6 and 43.1 respectively, with PL40
and PU60 as 77.7% and 78.8% (Fig. 8 (d)). We ran a one-way repeated measures ANOVA test to compare the
in-session and cross-session performance in the walking setting and and did not find a statistically significant
difference (𝐹 (1, 18) = 2.93, 𝑝 = 0.12 > 0.05). Similarly, we calculated the effect size between these two groups and
the Cohen’s 𝑑 (𝑑 = 0.241 < 0.5) reflects that there is only a small performance difference between in-session and
cross-session experiments in this setting. This suggests that our approach is resilient to device remounting while
walking, a frequent occurrence in practice.

6.1.3 Sitting versus Walking Comparison. As discussed before only seven participants participated in both the
sitting and the walking part of our study. We ran one-way repeated measures ANOVA tests on the data captured
for these participants and the results revealed a statistically significant difference between sitting and walking
experiments in the in-session setting (𝐹 (1, 12) = 15.95, 𝑝 = 0.007 < 0.05) and a statistically marginal difference
in the cross-session setting (𝐹 (1, 12) = 7.07, 𝑝 = 0.04 < 0.05). Furthermore, we calculated the effect sizes for
these two settings. The results (𝑑 = 1.233/1.097 > 0.8) show that the practical significance of the finding that the
tracking performance for sitting and walking scenarios are different is large in both in-session and cross-session
settings.

6.2 The Impact of the Amount of Training Data
In Subsec. 6.1, we evaluated the user study results using 16 sessions for training and 4 sessions for testing for the
cross-session setting because we would like to fully evaluate the performance of the system for each participant.
However, collecting 16 sessions of data can be time consuming. Therefore, we conducted an additional experiment
to see how the number of training data impacts the performance of the system. We picked 1 participant with one
of the best performance in both siting and walking scenarios (P1), 1 participant with one of the worst performance
in both scenarios (P2), and 2 other participants with moderate performance (P3 and P6). Then we used different
numbers of sessions to train the model and tested on the same 4 sessions. The results are demonstrated in Fig. 9.
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(a) Sitting scenario (b) Walking scenario

Fig. 9. MAE for 4 Participants with Different Numbers of Training Sessions

As is shown in the figures, for participants with relatively good performance, e.g. P1, P2, and P3 for sitting and
P1, P6 for walking, usually 8 sessions of training data are enough to predict their facial expressions accurately
cross sessions. Since each session is around 2 minutes, the system needs the collection of 16-minute training data
from them before usage. In contrast, for participants with worse performance, the system needs more sessions,
e.g., 12 or 16 sessions to reach an acceptable result.

6.3 User Adaptive Model
In the previous subsection, we mentioned that our EarIO system would need 16 minutes or more of data for
training before being used. This might be too long for some users in practice. As a result, we conducted a
Leave-One-Participant-Out (LOPO) evaluation on all the participants for sitting and walking to see whether
training data from other users can be used for new users, which can help decrease the time needed for data
collection when new users come. The results are shown in Fig. 10. According to the results, We found that the
model was very much user-dependent as the model trained on other people’s data did not work very well if being
directly used for new participants.

However, it is still possible to use this model to shorten the data collection process for new users if we fine-tune
the user-independent model with just 2 sessions of data (4 minutes) collected from new users. We denote such
model as the user-adaptive model. We will explain how we determine our user-adaptive model later in Subsec. 7.4.
The results in Fig. 10 demonstrate that the user-adaptive model trained with 2 sessions can provide similar
performance to the user-dependent model and works much better than the user-independent model. This means
that we still need to collect data from new users but the amount of data needed will be much less. This will help
make the device even more practical and easy to use with less amount of training data from the user.

6.4 Evaluation Using the Wireless Prototype
In the previous subsections, we validate the system using the wired version of the system. In order to further
analyze our system in a more practical and low power consumption setting, we conducted a follow-up study
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(a) Sitting scenario (b) Walking scenario

Fig. 10. Comparison between User-Dependent, User-Adaptive, and User-Independent Models across 5 Evaluation Metrics

with 3 participants (P4, P5 and one new participant P16, 2 females and 1 male) to test our wireless version of
the system. We only tested the sitting scenario because we only needed to verify that the data collection and
streaming of the wireless system is stable enough to support the facial tracking system. Overall, based on a
6-fold cross-validation on 6 sessions collected for each participant, the MAE, LMAE, and UMAE for in-session
experiments are 23.4 (𝑠𝑡𝑑 = 10.9,𝑚𝑖𝑛 = 14.8,𝑚𝑎𝑥 = 35.6), 19.4, and 30.2 respectively while PL40 and PU60 are
88.6% and 87.2%. For the cross-session experiments, using a 5-fold cross-validation on 20 sessions collected for
each participant, we have 25.6 (𝑠𝑡𝑑 = 7.9,𝑚𝑖𝑛 = 19.6,𝑚𝑎𝑥 = 34.5), 21.4, and 32.9 for MAE, LMAE and UMAE
respectively while PL40 and PU60 are 86.1% and 85.7%. These results are very similar to the performance of the
wired prototype shown in Tab. 2. Hence, by verifying the performance of the wireless system, it is safe to say
that our EarIO is capable of tracking facial expressions continuously with significantly low energy consumption.
In the next subsection, we would evaluate the specific power consumption of our wireless system.

6.4.1 The Impact of External Noise. Because our system relies on acoustic signals to reconstruct facial expressions,
there is a possibility that external noise in users’ daily lives could have influence on the system’s performance.
As a result, we tested the performance of our system with the existence of external noise. Since the effect of the
noise should be additive in a linear system, we decided to record the noise with our wireless prototype separately
and add the noise into the data we have already collected before in the wireless study. We believe this is a good
approximation of the system performance in real life. We tested the system under two different kinds of external
noise. Firstly, we wore the wireless system and sat by the roadside. We kept the system on to record the noise
of vehicles passing by and the noise of the wind. Then we mixed the noise into the data collected from three
participants in our previous wireless study. Because the noise was collected using the same system as the one
used in the wireless study, the mixing of noise and collected data has the same effect as testing the system on the
street. Using the same method, we used the wireless device to record the noise of users talking on the phone and
mixed it into the collected data separately.
Then we adopted 16 sessions data without noise from 20 sessions cross-session data collected from each

participant to train a model and tested the system on the remaining 4 sessions under three different settings,
without noise, mixed with street noise and mixed with talking noise. The tracking performance of EarIO in these
three scenarios is shown in Tab. 3. As is shown in the table, both noises have little impact on the performance

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 62. Publication date: June 2022.



62:18 • Li et al.

of the system for all three participants. We believe that the noise in our daily lives like those caused by people
talking or vehicles passing by usually has low energy in the frequency range we used so it should not cause
severe performance drop in our system. Therefore, this experiment proves the robustness of our system in noisy
environments.

Table 3. Performance of EarIO with Two Different Kinds of External Noise

External Noise P4 P5 P16

MAE LMAE UMAE MAE LMAE UMAE MAE LMAE UMAE
No Noise 20.2 16.7 26.1 20.1 14.0 30.8 34.0 31.0 39.1

Street Noise 19.2 15.8 25.0 20.5 14.0 31.8 34.3 31.6 38.9
Talking Noise 19.7 15.8 26.6 20.4 14.4 30.9 34.7 32.0 39.3

6.5 Power Consumption
We examined EarIO’s power signature to evaluate the practicability in deploying it on commodity devices. We
used a Current Ranger12 to measure the current drawn from the battery. Overall, EarIO consumes 153.7 mW (41.5
mA@ 3.70 V) with 2 speakers and 2 microphones on, and data transmission at 800 kbps. The 110 mAh battery
lasted 3 hours during our test run. Fig. 11 illustrates the current draw from the battery over time and we can
clearly identify the draw from the BLE subsystem. The two speakers consume the most power as the system
consumes only 12 mA on average without the speakers connected.

Fig. 11. Power Signature of EarIO Measured by Current Ranger

6.6 User Perception and Comfort
At the end of the study, each participant was instructed to finish a questionnaire to document their demographic
information and collect their thoughts and comments on the device. In this questionnaire, they were first asked
a question "How comfortable is this wearable device to wear around the face (0 most uncomfortable, 5 most
comfortable)?" Among all the 16 participants who took part in at least one of our study, an average score of 3.2
is given for the comfort of the device. In terms of the question "Were there any periods of discomfort?", four
participants mentioned that the data collection process was too long while only one participant mentioned that
12https://lowpowerlab.com/guide/currentranger/
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he noticed the sound emitted from the device and felt not quite comfortable with it. As for how to reduce the
amount of time needed for data collection, we have discussed it in Subsec. 6.2 and 6.3. Besides, the operating
frequency range of the system can be shifted even higher to make sure that it is completely inaudible to every
user, which will be discussed in Subsec. 7.2. Overall, most participants do not regard EarIO as a device which is
uncomfortable to wear and do not consider the emitted acoustic signals as a discomfort during the study.

6.7 Summary
In this section, we first validated the performance of our EarIO system based on the results of the user study.
Results show that the system can work satisfactorily both with and without remounting while users are sitting
and walking. We also evaluate the amount of training data needed for new users and the possibility of adopting
the user-adaptive model to significantly reduce the time of data collection. Following that, we conducted a
follow-up study with our wireless system and measured its power consumption to verify that our system can
work reliably using the wireless system with a remarkably low power consumption compared with previous
work. Furthermore, we verified the robustness of our system with the existence of external noise, as well as the
user perception and comfort of the system. All the results above demonstrate that our EarIO system is capable of
providing a low-power and practical method to track full facial expressions continuously.

7 DISCUSSION

7.1 Comparison with Previous Facial Expression Tracking Technologies
As discussed in Subsec. 2.2, most of the previous wearable facial expression tracking technologies are only
capable of distinguishing several discrete facial gestures, including Interferi [13] which also uses acoustic sensing.
Among the three recent work which can track facial movements continuously on wearables [4, 5, 38], we picked
NeckFace [4] to compare the tracking performance of our EarIO system with because it adopts the same ground
truth acquisition method and similar evaluation metrics. The results are shown in Tab. 4. As is shown in the
table, EarIO is better than NeckFace in sitting scenarios while worse than it in walking scenarios. Overall, these
two technologies are basically comparable to each other in tracking performance. However, compared with
NeckFace which is camera-based, EarIO can achieve a much lower power consumption (25 times lower than
NeckFace as discussed in Subsec. 2.2). As a result, we believe EarIO is a more practical wearable device with lower
power consumption while maintaining comparable tracking performance compared with previous camera-based
technologies.

Table 4. Comparison between EarIO and NeckFace [4] under Different Scenarios. Evaluation Metric: MAE. Results are
presented in the format of Mean | Standard Deviation.

Projects In-Session Cross-Session

Sitting Walking Sitting Walking
EarIO 24.6 | 7.5 32.1 | 7.3 25.9 | 6.0 33.9 | 7.8

NeckFace (Necklace) 30.3 | 6.3 25.4 | 6.4 34.1 | 9.5 /
NeckFace (Neckband) 25.6 | 5.1 22.6 | 5.2 28.4 | 7.9 /

7.2 Frequency Range
In the system implementation and user study, we used the frequency range of 16-20 kHz. This range was
empirically determined since it is not audible to most people, meanwhile it falls well within the limits with decent
margin of the 44.1 kHz sampling rate and the operating limits of the speaker and microphone. This range might
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be audible to some people. However, this frequency range can be easily modified based on the characteristics of
the speakers and microphones and sampling rate. We do no anticipate impact on performance by shifting the
frequency range higher as long as it is supported.

7.3 Noise Exposure Measurement
Because our system is continuously emitting sounds during the tracking process, there might be a concern that
this device can do harm to the hearing of users. As a result, we performed a noise exposure measurement of our
wireless system to make sure that our device is safe to use. According to the noise exposure limits recommended
by Centers for Disease Control and Prevention (CDC), a person can continuously be exposed to 85 𝑑𝐵(𝐴)
over 8 hours in the work space before reaching the maximum allowable daily dose [24]. Besides, for general
environmental noise outside the work space, a report from the U.S. Environmental Protection Agency (EPA) in
1974 recommended a 70 𝑑𝐵(𝐴) over 24-hour and 75 𝑑𝐵(𝐴) over 8-hour for average exposure limit [25].

Because dB(A) is measured while taking various sensitivities of human ears to different frequency ranges into
account, we believe this scale is very suitable for the noise exposure measurement of our EarIO system. Hence,
we used a smartphone app provided by CDC13 to measure the noise level of our wireless system. We did two
testings. First, we turned on the speaker and attached the smartphone directly onto the speaker. The app gave us
a measurement of 67.9 𝑑𝐵(𝐴). Then we measured the distance from the speaker to our ears while wearing the
device, which was around 6 cm. We put the device on table and place the smartphone around 6 cm away from
the speaker. The measure was around 63.5 𝑑𝐵(𝐴). Because when users wear the device, there is some occlusions
between the device and their ear canal, the 63.5 𝑑𝐵(𝐴) is actually the upper bound of the noise level that users
could hear. Comparing this result with recommendation from CDC and EPA, we are confident that our device is
safe to wear and can work all day with little concern of damaging the hearing of users.

7.4 Analysis of User-Adaptive Model
As mentioned in Subsec. 6.3, we applied a user-adaptive model to reduce the amount of time needed for data
collection process while new users come. In this subsection, we want to justify our choice of parameters for the
user-adaptive model. To determine how many sessions are enough to fine-tune the model, we experimented
using 1-4 sessions and the results show that all evaluation metrics converge at 2 sessions of data and using more
sessions will not increase the performance significantly.
Besides, we would like to make sure that the user-adaptive model can make a difference compared with the

performance not using a pre-trained model from other users. Hence, we selected the same 4 participants as
Subsec. 6.2 did and used 2 sessions from them respectively to fine-tune the user-adaptive model and also to directly
train a model for prediction. The 5 metrics MAE, LMAE, UMAE, PL40, and PU60 of the prediction outputted by
the user-adaptive model for sitting are 31.8 (𝑠𝑡𝑑 = 6.1,𝑚𝑖𝑛 = 26.8,𝑚𝑎𝑥 = 40.5), 28.4, 37.8, 77.6%, and 81.8% while
those of the prediction outputted by the directly trained model are 39.1 (𝑠𝑡𝑑 = 10.6,𝑚𝑖𝑛 = 31.4,𝑚𝑎𝑥 = 54.4), 36.1,
44.2, 68.9%, and 77.4%. For walking, the 5 metrics are 42.2 (𝑠𝑡𝑑 = 10.1,𝑚𝑖𝑛 = 28.0,𝑚𝑎𝑥 = 50.2), 38.0, 49.5, 66.9%,
and 76.5% of the prediction outputted by the user-adaptive model while those of the prediction outputted by the
directly trained model are 44.2 (𝑠𝑡𝑑 = 13.2,𝑚𝑖𝑛 = 28.1,𝑚𝑎𝑥 = 54.0), 41.0, 49.8, 63.1%, and 75.3%. By comparison, it
is safe to say that the user-adaptive model can significantly improve the performance for new users with just a
small amount of training data collected, especially under the sitting scenario.

7.5 Privacy
Although we have made our efforts to improve the practicability of our system to a large extent, there are still
some challenges remaining before directly putting this device into immediate deployment. For instance, the
13https://blogs.cdc.gov/niosh-science-blog/2014/04/09/sound-apps/
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recorded audio may still incur some privacy concerns from users. One direction to address this issue is to perform
on device filtering before transmitting the data through BLE. This can play an important role in alleviating the
privacy concern of EarIO.

7.6 Deployment of EarIO Algorithms on Smartphone
In order to enable our EarIO system to run in real time, we plan to deploy the data processing and machine
learning pipeline of EarIO on the smartphone. This is possible with the support of PyTorch Mobile14. With this
implemented, the collected data can be transmitted to the user’s personal phone and processed on it as well. Only
the estimated blendshapes will be forwarded to other devices for potential interaction with other users so that
the privacy of the user can be better protected. The estimated facial movements can be used in many applications
like rendering avatars for users in video chats in real time. Further experimentation will be needed to evaluate
this approach in practice.

7.7 Limitation
Similar to other wearable devices, our EarIO system also has some limitation which we should put efforts in to
resolve in future work. In this subsection, we list five major limitation of the system from our perspective.

7.7.1 Limited Choices of the Size of Earbuds. In Subsec. 6.1, we demonstrated that the system worked with an
acceptable performance for all participants. However, there are some participants who have relatively worse
prediction results than others, such as P10 in the sitting scenario. Based on the videos we recorded during the
experiment, we find that the earbuds we were using were too big to fit into the ear canal of P10 so the device
was actually very unstable on P10’s ears. Although our system was built upon commercial earphones and we
did have three sizes of the earbuds to change for different participants, even the smallest earbuds were too big
for P10. Hence, this is actually a drawback of the commercial earphones. However, in the future, we planned to
design our own earphone so that the size of the earbuds has more flexibility to switch between users.

7.7.2 Hair Blocking. As we mentioned in the study procedure part in Subsubsec. 5.4.1, we asked all participants
with long hair to put their hair up using a hair tie because we believe long hair has a possibility of blocking the
device and preventing it from tracking facial expressions accurately. This can limit the usage of the device in real
life because users do not always bring a hair tie with them and it will be inconvenient for them to put their hair
up every time they use this device. One way to solve this issue is to improve the form factor of our hardware
design, enabling more degrees of freedom to adjust the angles and lengths of different parts of the form factor. In
this way, users have the options to adjust the position of the device if they find their hair is blocking the device.
Besides, deploying the system using in-ear speakers and microphones can also help us avoid this blocking issue.

7.7.3 Running. In Sec. 6, we showed that our EarIO system could achieve a satisfactory performance in both
sitting and walking scenarios. Apart from these results, we also tested the system in a situation where the user
is moving faster. Using a setting similar to the cross-session section in the study described in Subsec. 5.4, one
researcher collected 16 sessions of cross-session data while keeping still for training. Then another 4 sessions
of data with the researcher keeping still and 4 sessions of data with the research running were collected for
testing. While the researcher was collecting the running data, he used a setup similar to the procedures of the
walking scenario introduced in Subsubsec. 5.4.2. He adopted a chest mount to hold the iPhone 12 in front of him
to collect ground truth and followed the instruction video to perform facial expressions while running in the
large experiment room. The testing result for 4 still sessions is 27.2 for MAE while that for 4 running sessions is
62.6 for MAE. Even though using one running session to fine-tune the model can improve the MAE for running

14https://pytorch.org/mobile/home/
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sessions to 48.9, the performance is still not good compared with sitting and walking scenarios. We believe this
decrease of performance is mainly caused by the rapid movement of the device and the user’s body. While sitting
and walking are the most common circumstances when users will use this device, it is possible that users may
also want to have their facial expressions tracked while running so it is crucial to perform future study, such
as improving the stability of the device, collecting a larger amount of data in this scenario, and applying more
complex noise-removal algorithms to better understand how to improve the performance of the system in more
dynamic environments.

7.7.4 User Dependency. Currently, our EarIO model is still user-dependent, which means new users still need to
collect training data before using this system. Even though we designed a user-adaptive model to shorten this
data collection process, the result was not completely the same as the user-dependent model. Especially for some
participants with worse performance, we may need to collect more training data from them. Considering that
different people have different shapes of faces, it might be helpful if we can take this into account for prediction
when we try to develop a completely user-independent model in the future. If we can make an effort to make the
system user-independent, then the EarIO system would be as convenient as the frontal camera-based methods,
without requiring the data collection process before usage for any user.

7.7.5 Requirements on Changing the Hardware Setting on Commodity Earphones. EarIO only needs one pair of
microphone and speaker on each side, which most commodity earphones already have. However, it is true that
our setup (e.g., position, orientation) of the microphone and speaker may need to be adjusted in order to deploy
EarIO. Exploring the feasibility of deploying EarIO on commodity earables is what we plan to explore in the next
step.

8 CONCLUSION
This paper presents EarIO, a low-power, minimally-obtrusive and practical acoustic sensing method to track full
facial expressions continuously. By using acoustic signals and the customized PCBs to transmit data via BLE,
the system operates at a very low power consumption at 154 mW while maintaining a comparable tracking
performance compared with previous work. A user study with 16 participants in total under three different
scenarios validated our system while participants are sitting, walking and after remounting the device. A follow-
up study verified the stability and practicability of our wireless system to work at a low energy consumption
state. There still remains several challenges before we can put the device into immediate deployment but we also
discussed several directions to go for future work to address these issues.
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