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ABSTRACT
In this paper, we introduce EyeEcho, a minimally-obtrusive acoustic
sensing system designed to enable glasses to continuously monitor
facial expressions. It utilizes two pairs of speakers and microphones
mounted on glasses, to emit encoded inaudible acoustic signals
directed towards the face, capturing subtle skin deformations asso-
ciated with facial expressions. The reflected signals are processed
through a customized machine-learning pipeline to estimate full
facial movements. EyeEcho samples at 83.3 Hz with a relatively low
power consumption of 167𝑚𝑊 . Our user study involving 12 partic-
ipants demonstrates that, with just four minutes of training data,
EyeEcho achieves highly accurate tracking performance across dif-
ferent real-world scenarios, including sitting, walking, and after
remounting the devices. Additionally, a semi-in-the-wild study in-
volving 10 participants further validates EyeEcho’s performance in
naturalistic scenarios while participants engage in various daily ac-
tivities. Finally, we showcase EyeEcho’s potential to be deployed on
a commercial-off-the-shelf (COTS) smartphone, offering real-time
facial expression tracking.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile de-
vices; • Hardware→ Power and energy.
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Eye-mounted Wearable, Facial Expression Tracking, Acoustic Sens-
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1 INTRODUCTION
Facial expressions play an important role in various interaction
applications including video calls, facial gesture input [30, 43, 51],
non-verbal communications (e.g. sign language [64]) and are indis-
pensable in virtual environments. Continuous and accurate facial
expression tracking is critical for an immersive and convenient
interaction experience for users. Deploying such technologies on
eyewears such as smart glasses (Lenovo ThinkReality A3 [32] and
Bose Frames Tempo [7]) and augmented reality (AR) glasses (Google
Glass [69] and Xreal Air 2 Ultra [76]) is especially promising and
important as these devices are widely available and serve as direct
media in these interaction applications.

However, developing continuous facial expression tracking tech-
nologies on glasses presents unique challenges due to the con-
straints of the sensor size and battery capacity. First, capturing both
upper and lower facial movements is crucial, but glasses primar-
ily cover the upper face, making lower face tracking challenging.
Maintaining high temporal and spatial resolutions of continuous
facial expression tracking is also difficult. Existing glasses-based
methods can only recognize discrete facial gestures. For instance,
recent work on glasses using the acoustic-based method can only
recognize 6 discrete upper facial expressions [74]. Second, smart
glasses often come with limited battery capacity due to the weight
restriction. Power-hungry sensors like RGB cameras drain batteries
on smart glasses quickly, e.g., in less than one hour [50]. Third, the
need for reliable performance after glasses are remounted (taken off
and taken back on) poses challenges, especially for on-skin sensors
(e.g. EMG sensors). As a result, continuous facial expression track-
ing on glasses has not been explored extensively. Other wearables
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Figure 1: Designed Facial Expressions and Corresponding Differential Echo Profiles.

like necklaces [5] and earpieces [6, 34, 72] have been used, but
they come with their own limitations. Earphones, for instance, face
issues with sensor placement and when tracking subtle upper-face
movements. Despite many people wearing glasses regularly, there
is no existing technology on glasses that can continuously track both
upper and lower facial expressions.

The research question of this paper is: Can we develop a sens-
ing system on glasses to track facial expressions continuously that
are light-weight, low-power, and can work well in real-world set-
tings? To answer this research question, we present EyeEcho, an
intelligent acoustic sensing solution that can continuously track
high-resolution facial expressions on glasses by analyzing the skin
deformations around the cheeks captured using only two pairs of
on-device speaker and microphone with inaudible acoustic signals
(Frequency Modulated Continuous Wave, FMCW). A customized
convolutional neural network is developed to estimate facial expres-
sions represented by 52 blend-shape parameters calculated using
Apple’s ARKit API [20] from the processed acoustic signals (echo
profiles). A user study with 12 participants showed that EyeEcho
can accurately estimate facial expressions continuously on glasses
using only four minutes of training data from each participant. Be-
sides, it is able to detect eye blinks with an F1 score of 82%, which
has not been shown in any of the prior work [5, 6, 34, 72].

In order to gain a deeper understanding of the EyeEcho’s perfor-
mance in real-world scenarios, we conducted a semi-in-the-wild
study involving 10 participants to evaluate the performance of the
facial expression tracking system on glasses in a naturalistic set-
ting. This study took place in three distinct rooms of an apartment:
the living room, bedroom, and kitchen. The study aimed to assess
the system’s ability to track facial expressions continuously while
participants engaged in various common daily activities. Impor-
tantly, the study encompassed real-world ambient noises, such as
the sound of videos, noise from the microwave oven, and the hum
of the refrigerator among others. In total, around 700 minutes of

data were collected in this study. The results demonstrate that our
system still showed reliable performance in tracking facial expres-
sions throughout the participants’ engagement in diverse activities
across different rooms and days.

In addition to the promising tracking performance, EyeEcho is
also relatively low-power and light-weight compared to camera-
based facial expression tracking technologies on wearables. The
full sensing system including sensors, Bluetooth module and mi-
croprocessors can operate at a sample rate of 83.3𝐻𝑧 with a power
signature of 167𝑚𝑊 . Theoretically, it can last for around 14 hours
using the battery of Google Glass (570𝑚𝐴ℎ) [69], if EyeEcho is
used alone. With the usage of more power-efficient speakers, the
power consumption of our system can be optimized to as low as
71𝑚𝑊 . The ML algorithm is optimized to be lightweight based on
the ResNet-18 architecture, so that it can be deployed on a com-
modity smartphone for real-time processing. EyeEcho is able to
track users’ facial expressions continuously at 29𝐻𝑧 in real-time
on a commodity Android phone, which was not shown in any of
the similar sensing systems [5, 6, 34, 72]. We believe EyeEcho has
significantly advanced the field of tracking facial expressions on
glasses by offering a low-power and minimally-obtrusive sensing
solution that can be deployed on commodity smartphones for real-
time tracking. The key contributions of this paper are summarized
below:

• Enabled continuous facial expression tracking on glasses
using low-power acoustic sensing;

• Conducted studies, including a semi-in-the-wild study, to
evaluate EyeEcho in estimating facial expressions including
eye blinks in both lab and real-world settings;

• Developed a real-time processing system on an Android
phone and demonstrated promising performance.
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Table 1: EyeEcho and Other Continuous Facial Expression Tracking Wearables. Power consumption only includes the data
collection and transmission (if any) unit. NS = Not Specified.

Project Form Factor Sensors Power
Training Evaluated Evaluated Evaluated Blinking Deployed on
Data across while Semi-in- Detection Phone in

Needed Sessions? Walking? the-Wild? Included? Real-time?

EyeEcho Glasses Acoustics 167mW 4 mins ✓ ✓ ✓ ✓ ✓

EarIO [34] Earphones Acoustics 154mW 32 mins ✓ ✓ ✗ ✗ ✗

EARFace [82] Earphones Acoustics 245mW 2 mins ✓ ✓ ✗ ✓ ✓

NeckFace [5] Neck-lace/-band Cameras 4W 7 mins ✓ ✓ ✗ ✗ ✗

C-Face [6] Ear-/Head-phone Cameras >4W 6 mins ✓ ✗ ✗ ✗ ✗

BioFace-3D [72] Single Earpiece Biosensors 138mW 20 mins ✗ ✗ ✗ ✗ ✗

Wei et al. [68] VR Headset Cameras NS NS ✓ ✗ ✗ ✓ ✗

Pantœnna [25] VR Headset Antenna ~1W ~16 mins ✓ ✗ ✗ ✗ ✗

2 RELATEDWORK
2.1 Non-wearable Facial Expression Tracking
The most commonly used non-wearable technologies to track fa-
cial expressions are based on cameras placed in front of the user
to capture the face. Researchers rely on the images captured by
RGB cameras [16, 62], thermal infrared cameras [14], and/or depth
cameras [16, 19, 62], or images from existing datasets [24, 38, 39,
54, 57, 71] to develop algorithms to track subjects’ facial expres-
sions. Recently, learning-based algorithms show impressive per-
formance on tracking facial expressions with the support of fast-
developing deep learning models, such as Convolutional Neural
Network (CNN) [19, 24, 54, 71], Generative Adversarial Network
(GAN) [29], Deep Belief Network (DBN) [14, 24, 39, 52], etc. Due to
their impressive performance of tracking facial expressions andmin-
imum requirement of the amount of training data needed, frontal-
camera-based algorithms have been used as the ground truth acqui-
sitionmethods inmanywearable facial expression tracking systems,
with the help of several public libraries, e.g., the Dlib library [26]
and the Apple’s ARKit API [20]. Despite their satisfactory tracking
performance, these technologies usually require capturing the full
face in the image, which does not work well when the user’s face is
occluded. Some researchers have put efforts in reconstructing users’
facial expressions when part of their face is occluded [16, 29, 71].
However, the frontal-camera-based algorithms are still easily im-
pacted by lighting conditions in the environment and does not work
well while users are in motion.

Apart from frontal camera based methods, recently some re-
searchers placed speakers and microphones in front of the user to
recognize facial expressions and emotional gestures [10]. This alle-
viated some privacy concerns brought by camera-based methods,
but the system can only recognize discrete expressions and emo-
tions. In the meantime, other researchers also use frontal speakers
and microphones to detect more subtle facial movements of the
user, which are blinking [36]. mm3DFace [73] reconstructed users’
facial expressions continuously with a competitive performance by
placing a millimeter wave (mmWave) radar in front of them. These
non-camera-based technologies demonstrate the potential of sens-
ing modalities other than cameras for tracking facial movements
but still suffer from the limitations of non-wearable devices that
they do not work well when the user’s face is occluded or the user
is walking around.

2.2 Wearable Facial Expression Tracking
2.2.1 Smart Glasses. Several prior projects implemented facial ex-
pression recognition on glasses [17, 28, 42, 55, 74], using a variety
of sensors, including piezoelectric sensors [55], photo reflective
sensors [42], cameras [17, 28], biosensors [28], speakers and micro-
phones [74]. However, all of them are only capable of distinguishing
several discrete facial expressions. To the best of our knowledge, we
have not seen any prior work that can track full facial movements
continuously on glasses. Usually, glasses are small and lightweight,
thus having a limited battery and processor. Therefore, it places
a high demand for the sensing technology on its size, weight and
energy consumption.

2.2.2 OtherWearables. Other wearables designed to track facial ex-
pressions include ear-mounted devices using cameras [6], speakers
and microphones [34, 82], EMG or/and electrooculography (EOG)
sensors [12, 72], Inertial Measurement Unit (IMU) sensors [63],
or barometers [2], face mask using acoustic signals [22], neck-
lace/neckband using cameras [5], and VR headsets using cam-
eras [68] or an antenna [25]. However, most of the work are only
able to recognize discrete facial gestures. Six recent work, C-Face [6],
NeckFace [5], BioFace-3D [72], EarIO [34], Pantœnna [25], and
EARFace [82], show the ability to track facial expressions contin-
uously on wearables, which we will compare in detail in the next
subsubsection.

2.2.3 Comparison between EyeEcho and PriorWork. We summarize
continuous facial expression tracking technologies on wearables
that are closest to our work in Tab. 1. Compared with previous
work, EyeEcho excels in at least one of the following aspects: 1)
tracking capability (continuous vs. discrete, 3D blendshapes vs. 2D
landmarks), 2) obtrusiveness, 3) power consumption and 4) perfor-
mance. For example, C-Face [6] and NeckFace [5] use cameras as
the sensing unit, which leads to high energy consumption. Neck-
Face operates at 4𝑊 which is 24 times higher than our system.
Pantœnna [25] instrumenting the VR headset with an antenna to
emit RF signals also consumes power as high as 1𝑊 . Furthermore,
Pantœnna can only track mouth, i.e. lower-face, movements and
the size of the antenna makes it difficult to be deployed on glasses
which are smaller and more lightweight. BioFace-3D [72] does a
great job in maintaining lower-power but its device requires at-
taching electrodes of biosensors onto the skin, which may make
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it uncomfortable to wear. Besides, it is unclear how it will work
after the user remounts the device or is in motion. EARFace [82]
achieves promising facial expression tracking performance on ear-
phones powered by acoustic sensing. However, their system needs
to operate in a frequency range as high as 40𝑘𝐻𝑧, requiring a sam-
pling rate of at least 80𝑘𝐻𝑧, which cannot be satisfied by many
commodity speakers, microphones and audio interfaces. Moreover,
EARFace emits acoustic signals into the ears and depends on the
reflections from the ear canals to track facial expressions. It is not
clear whether their system can work on glasses as well as on ear-
phones since the sensing area is completely different and the signal
reflection is more complicated outside human body.

In order to compare our work to EarIO, which also uses acoustic
sensing [34] to infer facial expressions from the movements on the
back of the chin using two earables, we conducted a rigorous and
thorough comparison and demonstrated that our EyeEcho sensing
system outperforms EarIO in terms of the performance, the training
data needed, the ability to detect blinks, and stability. We detail our
investigation into this matter in Sec. 8.5.

3 BACKGROUND
In this section, we introduce the background information on the
following aspects: (1) a definition of continuous facial expression
tracking; (2) principle of operation of EyeEcho.

3.1 Continuous Facial Expression Tracking
In order to position our work better in the previous literature,
we would like to provide a precise definition of continuous facial
expression tracking. Generally, there are two types of systems for
monitoring facial expressions, determined by whether the task they
aim to solve is classification task or regression task:

The first category focuses on recognizing a set of pre-defined
discrete facial expressions or gestures. Most prior wearable sens-
ing systems [2, 22, 63, 74] fall into this category. They perform
classification tasks and report the accuracy of distinguishing these
facial expressions or gestures as performance metrics. However, the
output of these systems does not provide information on how the
face appears during the process of making a facial expression. This
information is needed for downstream applications such as adding
facial expressions to render a personalized avatar or enabling video
conferencing on smart glasses without the need of holding a camera
in front of the face.

The second category aims to estimate the position and shapes of
all parts of the face (such as the nose, eyes, eyebrows, cheeks, and
mouth) continuously, often multiple times per second. Technologies
in this category usually carry on regression tasks. Most camera-
based methods have been able to track facial expressions contin-
uously. However, achieving continuous tracking with wearable
sensing systems has been challenging, as it requires high-quality
and reliable information about facial movements. Recently, several
wearable methods have started exploring continuous estimation
of facial expressions [5, 6, 25, 34, 72, 82]. As a starting point, they
define a set of facial expressions for participants to perform. Unlike
the methods in the first category, these systems are able to con-
tinuously provide the position and shapes of different facial parts
as a user makes a facial expression, ranging from a neutral face to

the most extreme state. The position and shapes of the facial ex-
pressions are represented using landmark parameters [6, 25, 72, 82]
or blendshape parameters [5, 34], which are the output of these
sensing systems. The performance is measured using the Mean
Absolute Error (MAE) between the predicted parameters and the
ground truth captured by a frontal camera. EyeEcho belongs to the
second category, as it tracks facial expressions continuously using
wearables. In Subsection 8.8, we further discuss various potential
applications that can be enabled by the ability to continuously track
facial expressions on glasses.

3.2 Principle of Operation
Prior work [6, 34, 72, 82] have demonstrated that partial skin and
muscle deformations behind and inside ears are highly informa-
tive to reconstruct full facial expressions when they are captured
by different kinds of sensors. Xie et al. [74] proved that the skin
and muscle deformations around the eyes and the cheeks contain
information that can be extracted to recognize upper facial ges-
tures. The sensing hypothesis of EyeEcho is that these deforma-
tions around eyes and cheeks are highly informative about detailed
facial movements on both lower and upper face including eyes,
eyebrows, cheeks, and mouth. Considering that people’s facial skin
and muscles are interconnected, moving any part of the face would
inevitably stretch the muscles and skin on the entire face. EyeEcho
applies this skin-deformation-based sensing hypothesis on glasses
to develop research questions: is it possible to infer full facial ex-
pressions by only observing skin deformations around glasses (e.g.,
cheeks)? If so, what is the appropriate hardware set up including the
number, orientation and position of the sensors? How well can it
track facial movements on different areas of the face (e.g., blinking)
under different real-world scenarios? To explore these research
questions, we developed EyeEcho using active acoustic sensing to
capture the skin deformations on glasses, which we will detail later.
We chose acoustic sensing because its sensors are small, lightweight,
low-power and have been successfully applied to various tasks on
tracking human activities, including health-related activities detec-
tion [45, 65], novel interaction methods [3, 66, 77, 78], silent speech
recognition [61, 80, 81, 83], authentication [11, 18, 23, 40, 67], dis-
crete facial expression recognition [74], gaze tracking [33], finger
tracking [46, 60], hand gesture recognition [31, 79], body pose esti-
mation [41], and motion tracking [35, 84].

4 DESIGN AND IMPLEMENTATION OF
EYEECHO

4.1 Hardware Prototype Design
4.1.1 MCU and Sensor Selection. The core sensing hardware of
our acoustic-based tracking system includes two MEMS micro-
phones (ICS-43434 [21]), two speakers (SR6438NWS-000 [27]) and
a bluetooth module (SGW1110 [70]) housed on customized Printed
Circuit Boards (PCB), as shown in Fig. 2 (a). The Nordic’s nRF52840
Bluetooth Low Energy (BLE) 5.0 System-on-Chip (SoC) [59] in the
Bluetooth module drives the speaker, microphone and data trans-
missions. The speakers and microphones are both connected to the
Inter-IC Sound (I2S) interface of nRF52840 via FPC wires. We set the
sample depth of the data as 8𝑏𝑖𝑡 , which requires a bit rate of about
800𝑘𝑏𝑝𝑠 to transmit two channels of received data to a smartphone
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(a) Customized PCB (b) Different Sensor Positions (c) Final Prototype (d) Wear the Prototype

Figure 2: Design of Hardware and Glasses Form Factor.

(Xiaomi Redmi) via BLE in real-time without significant packet
loss. This is well supported by BLE 5.0 [58]. This setup of the core
acoustic sensing unit allows transmitting two channels of acoustic
data reliably via BLE without compromising the performance.

4.1.2 Exploring Different Sensor Positions on Glasses. To imple-
ment EyeEcho on the form factor of glasses (e.g., smart glasses,
AR glasses), we fabricated a pair of glasses using 3D printing and
incorporated multiple holes at various positions. These openings
allowed us to securely attach the speakers and microphones using
screws. Given the limited space available on glasses, we identified
three primary positions suitable for sensor placement to capture
skin deformations without interfering with users’ daily activities:
1) on the legs of the glasses; 2) at the bottom of the frame; 3) under
the bridge of the frame, as depicted in Fig. 2 (b).

Position 1 involves placing one pair of speakers and microphones
on each leg of the glasses, directed downward toward the user’s
face. This setup enables the capture of skin deformations on both
the left and right sides of the cheeks, facilitating the detection
of respective facial movements on each side. The second option,
Position 2, relocates the two pairs of speakers and microphones
to the bottom of the glasses frame, also pointing downward and
closer to the user’s cheeks. In addition to these two setups, the last
option involves positioning only one speaker under the bridge of
the glasses frame (Position 3), while keeping the microphones at
Position 2. This configuration consumes less energy as it requires
only one speaker.

We conducted a preliminary cross-session experiment involving
two researchers to assess the tracking performance of the three
positions using the algorithms detailed in the subsequent sections.
Across the three setups, we obtained average Mean Absolute Errors
(MAE) of 18.0, 18.0, and 22.8, respectively, for 52 blendshape param-
eters when comparing the ground truth with our predictions. Based
on these experimental results, the first two setups outperformed
the last option in terms of tracking performance. Notably, Position
2 was found to be more obtrusive than Position 1, as the sensing
unit on the glasses frame had a higher likelihood of obstructing the
user’s face and impacting their daily activities. Furthermore, it’s
worth noting that most commodity smart glasses integrate sensors
on their legs. Therefore, placing the sensors on the legs aligns with
the potential future adoption of this sensing technology on glasses.
Consequently, we chose Position 1, which involves attaching a pair
of speakers and microphones to each leg of the glasses.

4.1.3 Form Factor Design. After finalizing the positions of the
speakers and microphones, we designed and 3D printed one case
with a sliding cover to house the BLE module and the battery.
The case is mounted on the left leg of the glasses and specifically
designed to match the shape of the leg. We cut a narrow slot on
one side of the case in order to let the FPC wires go through and be
connected with the speakers and microphones. While connecting
the speakers and microphones to the BLE module, the FPC wires
are routed along the glass frame, so that the wires will not block
the user’s view and be less obtrusive. The final complete prototype
is shown in Fig. 2 (c). We think the final prototype is minimally-
obtrusive and very close to a normal glass frame in appearance, as
shown in Fig. 2 (d).

4.2 Sensing Skin Deformations using
FMCW-based Acoustic Sensing

With the prototype of glasses completed, we then introduce howwe
adopt FMCW-based acoustic sensing to sense the skin deformations
on glasses. The system overview of EyeEcho is displayed in Fig. 3.

4.2.1 FMCW Signal Transmission. We choose FMCW as the acous-
tic sensing technique, because it has demonstrated robust perfor-
mance on wearable-based sensing applications, including tracking
finger positions [46], breathing patterns [45, 65], and skin deforma-
tions around ear [34]. We set the frequency range of transmitted
FMCW signals in our system to 16− 20𝑘𝐻𝑧, which is nearly inaudi-
ble to most adults and can be reliably achieved by most commodity
speakers and microphones as demonstrated in many prior work
[46, 83]. In order to emit the transmitted signals in this ultrasonic
frequency range, we set the sampling rate at 50𝑘𝐻𝑧, which can
support the frequency range up to 25𝑘𝐻𝑧 in theory. Besides, the
FMCW sample length is set as 600, which is 0.012 seconds long
(600 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/50𝑘𝐻𝑧). In this setting, our system is capable of esti-
mating facial expressions 83.3 times per second, which is enough to
proivde similar sample rate to as video recordings (30 or 60 frames
per second (FPS)). This FMCW signal is pre-generated as shown in
Fig. 3 (c), and stored in the BLE module to drive the speakers.

4.2.2 Echo Profile Calculation. Once acoustic signals are reflected
by the face and received by the microphone (Fig. 3 (e)), we conduct
further data processing. We first apply a 5-order Butterworth band-
pass filter with low-cut and high-cut frequencies as 15.5𝑘𝐻𝑧 and
20.5𝑘𝐻𝑧 to filter out noise that is outside the frequency range of
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Figure 3: Overview of EyeEcho System.

our interest, as shown in Fig. 3 (f). Then we obtain the Echo Profile
of received signals by calculating the cross-correlation between the
received signals and transmitted signals [65], which can display
the deformations of the skin in both temporal and spacial domains
(Fig. 3 (g)).

With the echo profiles calculated, EyeEcho provides a spacial
tracking resolution of 6.8𝑚𝑚 (340𝑚/𝑠 / 50𝑘𝐻𝑧) and a maximum
tracking distance of 4.08𝑚 (6.8𝑚𝑚 × 600 𝑠𝑎𝑚𝑝𝑙𝑒𝑠). Because the
speaker and microphone are placed very close to each other, the
signals travel in round trips from the speaker to the face and back
to the microphone. Thus, the real tracking resolution in space and
the maximum one-way tracking distance are 3.4𝑚𝑚 and 2.04𝑚
respectively. This means that each "echo bin" in the echo profile
reports the total signal strength our system receives at a specific
distance from our system and two consecutive echo bins are 3.4𝑚𝑚

apart from each other. As the skin deforms by small amount, the
way the signal strength is distributed in different bins is changing.
Observing these changes in the echo profile makes the EyeEcho
systemwork. In order to remove the static objects in the background
and alleviate the impacts of remounting the device, we further
calculated Differential Echo Profile by subtracting the echo profile
between two adjacent echo frames, like the one shown in Fig. 3 (h).
Please note that signals at the negative distance in the echo profile
are the reflected signals of the last echo frame from a very long
distance and are usually useless in tracking facial expressions.

Fig. 4 demonstrates the differential echo profiles of three facial
movements performed by a researcher. When the user performs
one facial expression that only relates to one half of the face (Fig. 4
(a) and (b)), a clear pattern can be observed in the differential echo
profile in the corresponding channel. The other channel also con-
tains weaker information because people’s facial skin and muscles
are interconnected. Moreover, the major parts of the patterns are

within 0 − 10𝑐𝑚 because the user’s face is located within this dis-
tance from our EyeEcho system approximately. Because the signal
we emit is finite in the frequency domain, it diffuses into further
echo bins in the time domain when the cross-correlation is calcu-
lated. Also considering the multi-path reflection, some patterns can
be observed at the negative distance and the distance beyond 10𝑐𝑚.
However, the echo bins between 0−10𝑐𝑚 contain most information
for EyeEcho to track facial expressions. When the user blinks (Fig. 4
(c)), patterns can be observed in the differential echo profiles of
both channels. Compared with the patterns caused by sneering left
or right, the patterns related to blinking are weaker and shorter
because of the nature of people’s blinks. All these features support
our hypothesis that the skin and muscle deformations around eyes
and cheeks are informative for both upper-face and lower-face
movements and can be captured by acoustic sensors to track users’
full facial expressions.

Since the distance between the glasses and the face is usually un-
der 10𝑐𝑚, we remove any echoes that are beyond 10.2𝑐𝑚 (3.4𝑚𝑚 ×
30 𝑒𝑐ℎ𝑜 𝑏𝑖𝑛𝑠) in the differential echo profile. This will help us to
minimize the impact of the acoustic echos from environment ob-
jects which are usually placed at a much further distance. This
differential echo profile with a length of one second is sent to a cus-
tomized learning algorithm to estimate the full facial expressions,
as detailed in Sec. 4.3.

4.3 Learning Algorithms for Continuous Facial
Expression Tracking

In order to infer full facial expressions continuously from the skin
deformations represented by differential echo profiles, we adopted
a customized deep learning pipeline.
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Figure 4: Comparison of Differential Echo Profiles of Three Facial Movements.

4.3.1 Ground Truth Acquisition. The deep learning model requires
reliable ground truth of the facial expressions to train the model. We
choose to use the TrueDepth camera on an iPhone powered by Ap-
ple’s ARKit API [20] to record the ground truth of facial expressions
at 30 FPS, represented by 52 blendshape parameters. Each param-
eter is in charge of the shape and position of one part of the face
(e.g., jawOpen). The original range of each blendshape parameter
is from 0 to 1. We multiply the value of each blendshape parameter
by 1000 to better train the model. After this operation, the maxi-
mum possible value of each parameter is 1000. As demonstrated in
previous work [5, 34], this method can provide reliably track 3D
facial movements on the cheeks, the eyes, the eyebrows, the nose,
the mouth, and the tongue. We chose to use this blendshape-based
ground truth instead of 2D landmarks because it can provide more
visual expressiveness by showing the movements of different parts
of the face in 3D.

4.3.2 Deep Learning Model. We apply a sliding window of one
second on the received acoustic data, which leads to 84 frames in
Differential Echo Profiles of each window. Each Differential Echo
Profile has 60 data points including 30 data points representing the
echo distance of 10.2𝑐𝑚 for eachmicrophone. In total, the dimension
of the input vector for the deep learning model is 60 × 84. To make
predictions for the current frame, we utilize the current frame
plus the 83 frames prior to the current frame as input data so that
there is minimum delay for the real-time prediction. Technically,
the maximum possible delay caused by the sliding window is the
length of one frame which is 12𝑚𝑠 . As we apply the sliding window
technique, for each prediction, we can store and reuse the last 83
echo frames from last prediction and just calculate the current
echo frame so that the calculation will be fast enough for real-time
prediction at our expected refresh rate.

To estimate full facial expressions from these Differential Echo
Profiles, we adopted an end-to-end Convolutional Neural Network

(CNN) model. We chose CNN in our system rather than other mod-
els such as Recurrent Neural Network (RNN) because after process-
ing the raw audio data and obtaining the Differential Echo Profile,
the time series data is converted to images containing information
in both spatial and temporal domains. Adopting CNN achieves a
better performance in this kind of tasks. Thus, a 34-layer Residual
Neural Network (ResNet-34) is used as the backbone learn the fea-
tures from the input data vectors and a fully-connected decoder is
utilized to estimate the facial expressions including 52 parameters
of the blendshapes. MAE between the prediction and the ground
truth was used as the evaluation metric to train the model.

5 EVALUATION OF EYEECHO IN AN IN-LAB
STUDY

We aim to design a facial expression tracking system that is light-
weight, low-power and robust in various real-life scenarios. To
achieve this, we evaluated EyeEcho with both controlled in-lab
study and naturalistic semi-in-the-wild study. The in-lab study
aims to provide an in-depth analysis of the performance of EyeE-
cho with different controlled setups, more granular metrics, and
more comprehensive experiments, while the semi-in-the-wild study
focuses on showcasing EyeEcho’s actual performance in near-real-
world settings. We present the details of the first in-lab study in this
section followed by Sec. 6 which introduces another in-lab study
evaluating EyeEcho comparing different settings, while details of
the semi-in-the-wild study are in Sec. 7.

In the first study, we considered several scenarios that commonly
occur in real life, such as sitting, walking, and remounting. The val-
idation within these contexts serves as a crucial step in establishing
the system’s potential effectiveness in real-world applications.
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Figure 5: The Degree of Deformation of Different Facial Parts when Performing Different Facial Expressions to the Most
Extreme State.

5.1 Study Design
5.1.1 Apparatus. We used the hardware and form factor described
in Sec. 4.1 to conduct the study. We used a smartphone, Xiaomi
Redmi to function as a server, receiving transmitted data from the
BLE module. To record the ground truth of facial movements and
play the instruction video, an iPhone 12 with the TrueDepth camera
was placed in front of participants. In walking scenario, participants
wore a chest mount which kept the iPhone in front of the face.

5.1.2 Selection of Facial Expressions for Continuous Tracking. We
selected nine distinct facial expressions that involve movements
of both the upper and lower face, as visually represented in Fig. 1.
It’s important to note that while these expressions were chosen
for testing purposes, our system continuously tracks facial expres-
sions. These particular expressions were carefully chosen to enable
a comprehensive evaluation of EyeEcho’s performance in estimat-
ing a wide range of common facial expressions, encompassing
movements in various facial regions, including the eyes, eyebrows,
mouth, and cheeks.

To emphasize this point, we initially defined the "degree of de-
formation of one facial part" as the average of the blendshape pa-
rameters associated with that specific part out of the 52 blendshape
parameters provided by the ARKit API, as introduced in Sec. 4.3.1.
Subsequently, we plotted the degree of deformation of different
facial parts while participants performed these nine facial expres-
sions to the most extreme state, as depicted in Fig. 5. As previously
discussed in Sec. 4.3.1, theoretically, the maximum possible degree
of deformation for one facial part is 1000. The figure illustrates that
nearly all facial parts, with the exception of the tongue (related
to only one blendshape parameter), exhibit some degree of move-
ment when performing either upper or lower facial expressions.
This observation underscores the interconnected nature of facial
muscles. Moreover, the movements of the mouth, cheeks, and nose
are even more pronounced when upper facial expressions, such as

"Close Eyes," are performed. This substantiates our claim that these
nine selected facial expressions effectively evaluate our system’s
performance in tracking multiple facial parts simultaneously. It’s
worth noting that these expressions have also been utilized in prior
studies, such as [34]. During the study, participants were presented
with these facial expressions multiple times in an instructional
video to mimic, and the order of presentation was randomized in
each session to mitigate the influence of expression sequence. In
Fig. 5, we also included a subtle facial movement, blinks, because
they happened spontaneously to the participants in the study.

While the theoretical maximum degree of deformation is 1000,
practical facial deformations performed by humans are significantly
lower than this maximum value. As illustrated in Fig. 5, even when
participants reach the most extreme state of a particular facial
expression, the degree of deformation for all or most facial parts
remains below 250. This observation underscores that in practice,
facial deformations are well below the theoretical maximum.

To provide readers with a visual understanding of varying de-
grees of deformation for different facial expressions, we calculated
the "degree of deformation of one facial expression" by averag-
ing the values of the 52 blendshape parameters representing that
specific facial expression. We then visually presented how four dif-
ferent facial expressions appear at different degrees of deformation,
specifically when the degree of deformation is 0 (neutral face), 50,
100, and 150, as depicted in Fig. 6. Notably, we could not plot the
150-degree deformation for "Open Mouth" because the degree of de-
formation could not reach 150 even when the mouth was opened to
the extreme. From our empirical observations presented in the fig-
ure, it can be inferred that when the degree of deformation reaches
150, most facial expressions visually attain their most extreme state.

5.1.3 Study Procedure. This study was approved by the IRB at the
researcher’s institution. We successfully recruited 12 participants
in this study. We have 3 female and 9 male participants, ranging
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Figure 6: Visualization of Varying Degrees of Deformation.

from 18 to 25 years old. Each participant filled out a questionnaire
to collect their demographic information and was compensated
USD $15 after they came to participate in the study.

The study was conducted in a large experiment room on campus,
across different times of the day. During the user study, partici-
pants were asked to remove their own glasses before the study (if
applicable) to wear the testing glasses. The evaluation process has
two scenarios: sitting and walking. We started the study with the
sitting scenario to initially assess the optimal system performance
while participants remained relatively stationary. After the sitting
scenario, adjustments were made before transitioning to the walk-
ing scenario. For example, participants wore a chest mount to hold
the iPhone in front of them to capture their faces while walking.

Each scenario comprised 12 sessions, each of which lasted for
approximately two minutes. During each of these sessions, the
instruction video displayed on the screen of the iPhone placed in
front of the participants featured a researcher performing all nine
facial expressions six times in a random order, with brief pauses be-
tween expressions. Participants were directed to emulate the facial
expressions shown in the video. Following the correct placement of
the device, participants underwent a two-minute practice session
to acquaint themselves with the testing system and the required
facial expressions.

Before each session, participants were instructed to clap his/her
hands for synchronization between the EyeEcho device and the
ground truth acquisition system. After each session, participants
were asked to remount the device by themselves, including taking
off the device, taking a short break, and putting the device back
on. The goal was to evaluate how our system can perform after
the device was remounted which introduced shifts on the wearing
positions. During the walking scenario, participants were instructed
to walk around in the study room at their comfortable walking
speed while mimicking the facial expressions displayed on the
screen of the iPhone held by the chest mount they wore.

In total, for each participant, we collected around 48 minutes of
data from 24 sessions for two scenarios combined. This includes
1296 facial expressions (9 facial expressions × 6 repetitions × 12
sessions × 2 scenarios).

5.2 Evaluation Metrics
As discussed in Sec. 4.3.1, a full facial expression is represented by 52
blendshape parameters in our system. We evaluate the performance
using the Mean Absolute Error (MAE) of the 52 parameters between
the prediction of EyeEcho and the ground truth. Employing this
common metric allows us to compare EyeEcho’s performance with
that of prior work. It is important to note that the same MAE value
can yield substantially different visualization results for the lower
face and upper face in terms of how closely the predicted facial
expression matches the ground truth, as perceived by human eyes.
In order to help readers better understand the true performance of
our system, we divided our evaluation metrics into two categories:
1) Lower-face MAE (LMAE) - evaluating 33 lower-face blendshape
parameters related to the movements of cheeks, mouth, nose and
tongue and 2) Upper-face MAE (UMAE) - evaluating the remaining
19 upper-face blendshape parameters related to the movements of
eyes and eyebrows. Based on our observation and also from prior
work [5, 34], there is little visual difference between the prediction
and ground truth when LMAE is below 40 and UMAE is below 60.
Therefore, we adopted two other evaluation metrics in the results,
the Percentage of Frames with LMAE under 40 (PL40) and the
Percentage of Frames with UMAE under 60 (PU60). In total, we
report five metrics, including MAE, LMAE, UMAE, PL40 and PU60
in the following sections when reporting the tracking performance
of EyeEcho.

We plotted the visualization of facial expressions with different
MAE for three facial expressions, Open Mouth, Open Eyes, and
Blink, in Fig. 7. The figure shows that for large facial movements
such as Open Mouth (lower-face) and Open Eyes (upper-face), the
prediction is visually similar to the ground truth when MAE is
under 40. When MAE is around 20, the prediction is almost indis-
tinguishable to the ground truth. For subtle facial movements, like
blinking, the prediction is also highly similar to the ground truth
visually when MAE is under 20.

5.3 User-Dependent Model
We first analyze the performance of EyeEcho to track facial ex-
pressions continuously. With all the 12 remounting sessions of
data collected under each scenario, we conducted a 6-fold cross-
validation using 10 sessions to train the model and 2 sessions as the
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Figure 7: Visualization of Facial Expressions under Different Values of MAE.

testing sessions to evaluate the results.We report the five evaluation
metrics, as shown in Tab. 2.

Table 2: Evaluation Results for both Scenarios.

Scenario MAE LMAE UMAE PL40 PU60

Sitting 22.9 20.4 27.1 88.8% 92.6%
Walking 26.9 22.7 34.3 87.1% 88.5%

5.3.1 Numerical Results. In the sitting scenario, the average MAE
for all 12 participants is 22.9, ranging from 16.3 to 27.8 with a
standard deviation of 3.2. We plotted the cumulative distribution
function (CDF) of LMAE and UMAE in average and also for each
participant in Fig. 8 (a). These results validate EyeEcho’s ability to
track the continuous movements of both the lower face and upper
face of users in the sitting scenario across different remounting
sessions.

In the walking scenario, the average MAE is 26.9, ranging from
20.0 to 31.6 with a standard deviation of 3.1. Same as the sitting sce-
nario, we plotted CDF of LMAE and UMAE in Fig. 8 (b). Compared
to the result in the sitting scenario, the performance of EyeEcho
slightly decreases in all metrics.

To assess the statistical significance of this difference, we ran a
repeated measure t-test between the MAE of the sitting scenario
and the walking scenario across all 12 participants and found a sig-
nificant difference (𝑡 (11) = 5.51, 𝑝 = 0.0002 < 0.05). The difference
in performance is expected because walking scenarios introduced
more noise caused by the motion of the user (e.g., shaking of the
head) and displacement of the device. We also observed the acoustic
signals were reflected differently from different background objects
like walls and tables while participants were in motion. These fac-
tors collectively contribute to the slight drop in performance during
user motion. Nevertheless, the results showed that our system is

capable of tracking facial expressions accurately and reliably, even
when the users are walking.

5.3.2 Visualized Results. To visually demonstrate the tracking per-
formance of our system, we present the visualization results on two
facial expressions, Smile Face and Close Eyes. We decided to pick
3 frames with the MAE close to 15, 25, and 35 for the smile face
expression and 3 frames with the MAE close to 30, 40, and 50 for
the close eyes expression. Each frame was randomly selected from
the data we collected from all 12 participants. As we can see from
Fig. 9, a predicted frame with an LMAE under 40 and an UMAE
under 60 is highly similar to the ground truth visually. Comparing
this standard to our study results in Tab. 2 with average LMAE at
20.4 and 22.7 and UMAE at 27.1 and 34.3 for the sitting and walking
scenarios, our system can reliably track facial movements across
different scenarios, even after remounting.

5.4 Performance on Tracking Facial Expressions
with Varying Degrees of Deformation

Since our EyeEcho system tracks facial expressions continuously
rather than classifying them, we capture the entire process of a fa-
cial expression transitioning from a neutral face to its most extreme
state. In the previous subsection, we validated the overall perfor-
mance of our EyeEcho system. However, it is also important to
assess its performance in tracking different degrees of deformation
for these facial expressions. Fig. 5 depicts the degree of deformation
of different facial parts in frames where the facial expressions are
performed to the most extreme state but they usually only account
for a small portion of all frames in the entire process of making
facial expressions because this is a continuous process from the
neutral face to the most extreme state of facial expressions and
then back to the neutral face. To quantify this proportion, based on
our analysis in Sec. 5.1.2, we calculated the degree of deformation
for each frame and categorized all frames in the user study into
four groups based on their degrees of deformation. We present the
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(a) Sitting Scenario (b) Walking Scenario

Figure 8: Cumulative Distribution Function (CDF) of MAE for all Participants. Red Lines: LMAE, Blue Lines: UMAE. Pale Lines:
MAE for Each Participant, Solid Lines: Average MAE, Dash Lines: 40 LMAE and 60 UMAE.

Figure 9: Visualized Results. Datapoint: P (Participant), S (Sitting), W (Walking).

evaluation results in terms of average MAE for each category in
Tab. 3, along with the percentage that each category represents
among all the frames.

As shown in the table, the majority of frames in our user study
have deformation levels below 150, in alignment with what has
been shown in Fig. 6. The frames plotted in Fig. 5 mostly fall into
the last category in the table with the degree of deformation larger
than 150, taking up less than 10% of all the frames. Note that the
maximum degree of deformation that the subtle facial movement
blinking can reach is usually below 100, as shown in Fig. 5. Our
system demonstrates satisfactory performance on tracking facial
expressions for the frames with a degree of deformation smaller
than 150, as Subsec. 5.2 and Fig. 7 establish that the prediction and
ground truth are visually highly similar when the MAE is below 40.
For frames with deformation levels exceeding 150, the performance
of our system is slightly lower, but it still maintains an acceptable

level of accuracy, as depicted in Fig. 7 and Fig. 9. For blinking
which has more subtle degree of deformation (smaller than 100), our
system also achieves promising tracking performance considering
that the MAE is around 20, as compared to the visualization in Fig. 7.
This analysis demonstrates that our system performs well across
varying degrees of deformation for different facial expressions.

Table 3: Evaluation Results vs. Different Degrees of Defor-
mation (Data Format: MAE [Percentage of Total Frames]).

Degree of Deformation Sitting Walking

<50 16.1 [8.8%] 17.5 [12.1%]
50-100 18.8 [64.8%] 22.6 [62.4%]
100-150 35.8 [18.0%] 42.8 [17.2%]
>150 39.6 [8.4%] 43.5 [8.3%]
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5.5 Determining Minimum Training Data
Requirement

In the previous experiments, we used the data from 10 sessions (20
minutes of data) to train the model. However, 20 mins of training
may not be always preferable for users in real-world deployments.
Therefore, we further explore how much training data is needed
before the system reaches an acceptable accuracy. We chose two
sessions of data as the testing sessions and employed 2, 4, 6, 8 and
10 sessions of data respectively to train the model for each scenario.
We showed the evaluation results in Fig. 10. As we can see in the
figure, the average performance of the system improved with more
training data. However, evenwith just 2 training sessions (4 minutes
of training data), the system achieved a MAE of 29.7 and 34.3 for the
two scenarios. According to the analysis in Sec. 5.2 and Sec. 5.3.2,
this result is already good enough to provide an acceptable tracking
performance on facial expressions that are highly similar to the
ground truth visually. In essence, two sessions of training data
are likely enough to provide satisfactory tracking performance in
real-world deployments for the majority of users. More training
sessions could be collected for users who do not have good enough
performance.

Figure 10: Impact onMAEwith Different Number of Training
Sessions (NT).

5.6 User-Adaptive Model
In the previous experiments, we employed a user-dependent model
to predict facial expressions for each individual participant. This
model was trained using the data specific to each participant. To
investigate the degree of user dependency within the system, we
conducted a Leave-One-Participant-Out (LOPO) experiment for
each scenario. In this experiment, we utilized the data from 11
participants to train the model and then evaluated the results on
the data from the remaining participant. This process was repeated
for each participant, and an average result was obtained using this
user-independent model.

The results of this user-independent model are presented in
Fig. 11. Notably, in comparison to the results of the user-dependent
model, the results were worse, with a MAE of 49.0 and 53.2 for
the sitting and walking scenarios, respectively. However, this out-
come was anticipated because our system relies on the reflection

of acoustic signals on the face and head, which varies significantly
among participants. Additionally, differences in how participants
wore the device and executed facial expressions also contributed to
this variance.

Figure 11: Impact on MAE with Different Models.

Subsequently, we explored a user-adaptive model, where we used
a small portion of data collected from this participant (2 sessions)
to fine-tune this LOPO model. As shown in the figure, the results
for both scenarios significantly improved compared with the user-
independent model, with an MAE of 25.7 and 30.5. Besides, the
results were also better than those trained using a user-dependent
model with the same amount of training data (2 sessions), with an
MAE of 29.7 and 34.3. This result showed the potential for further
performance enhancement. If the model can be trained with a much
larger data set frommore participants in the future, the performance
of the model can be further improved with minimal training data
from a new user.

5.7 Transfer Learning using Data from Sitting
to Walking Scenario

All the experiments and analysis above separated the sitting and
walking scenarios and reported the performance independently.
This indicates a new user is required to provide data for both sitting
and walking scenarios, which may not offer the optimal user ex-
perience. In this experiment, we explored using the data collected
from the sitting scenario to train a model, which is transferred and
evaluated on the testing data collected in the walking scenario. For
this experiment, we compared three models. Among the three types
of models, the testing data was the same two sessions collected
in the walking scenario. The results were averaged across all 12
participants.

The first model is User-dependent Model (NT10), where 10 ses-
sions from the walking scenario were used to train the model with
no transfer learning applied. The average MAE for this model is
26.9. In the second model (Transfer learning Model (NT2)), the
model was trained with 10 sessions of data from the sitting scenario
and fine-tuned using 2 sessions of data from the walking scenario.
This model yields an average MAE of 29.0. In the third model, only
2 sessions from the walking scenario were used to train the model.
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Figure 12: MAE for all Participants in the Study with Operating Frequency Range 20-24 kHz.

The average MAE in this case is 34.3. The results show that transfer
learning improves the MAE from 34.3 to 29.0, using the same size
of training sessions from the walking scenario. It shows that Eye-
Echo has the potential to be adapted to the new walking scenario
with minimal training data needed. We plan to explore how to use
advanced transfer learning to further reduce the training data for
new scenarios in the future.

6 EVALUATION OF EYEECHOWITH
DIFFERENT SETTINGS

In this section, we conducted a new study in the lab to evaluate
EyeEcho’s performance with different operating frequency ranges
and under different noisy environments, as well as the usability of
EyeEcho.

6.1 Impact of Operating Frequency Range
The EyeEcho system was designed to operate within the frequency
range of 16 − 20𝑘𝐻𝑧, with the goal of easy adoption on most com-
modity speakers and microphones since the acoustic sensors in
most commodity devices can sample up to 48KHz. In post-study
surveys, participants did not report any issues with hearing the
acoustic signals. While it is possible that some users may be able to
hear it, EyeEcho can readily adapt to higher inaudible frequencies
with minimal impact on tracking performance. In order to validate
this assumption, we shifted the operating frequency range of the
EyeEcho system to 20 − 24𝑘𝐻𝑧 and conducted a new in-lab user
study of the same procedure described in Sec. 5.1 with 10 partici-
pants (3 females and 7 males, 22 years old on average). With the 12
sessions of data we collected from each participant, we also ran a
6-fold cross-validation by using 10 sessions to train the model and
2 sessions to evaluate the performance. The average MAE of each
participant and all 10 participants on average are demonstrated in
Fig. 12.

As shown in Fig. 12, the average MAE of all 10 participants
in this study is 23.6, which is comparable to the MAE of 22.9 in

the first study in Sec. 5 with the operating frequency range set
at 16 − 20𝑘𝐻𝑧. This validates that EyeEcho can be adapted to a
higher inaudible frequency range (20 − 24𝑘𝐻𝑧) with little impact
on the system performance. Furthermore, we specifically asked
each participant "Can you hear the sound emitted from our system?
Yes / No" in the questionnaires collected at the end of this study
and all 10 participants answered ’No’ to this question. Therefore,
we believe that EyeEcho can operate at a frequency range that
has minimal impact on users’ daily activities with a satisfactory
tracking performance.

6.2 Impact of Environmental Noises
Since EyeEcho uses acoustic signals as the sensing method, there is
a chance that everyday environmental noise could have a negative
impact on the tracking performance. To investigate how different
environmental noises can affect performance, we further extended
the new study in Sec. 6.1. The study was originally conducted in
a quiet meeting room with the background noise of the air con-
ditioner, as shown in Fig. 13 (a). To evaluate the EyeEcho system
under different noisy environments, after the first part study was
completed in the quiet room, we then asked the participants to
move to different environments to collect testing data with the exis-
tence of various types of noises: (1) Music Noise: in the experiment
room with random music played (Fig. 13 (a)); (2) Cafe Noise: in a
cafe with cafe staff and customers talking (Fig. 13 (b)); (3) Street
Noise: on the street near a crossroad with vehicles and pedestrians
passing by (Fig. 13 (c)). In every one of the three noisy environments
above, each participant performed facial expressions for 2 sessions
(4 minutes) as testing data.

Then, we used the first 10 of 12 sessions of data collected in the
quiet room to train a model, which was tested using the remaining
2 sessions of data in the quiet room and 2 sessions of testing data
collected in different noisy environments. Please note that no data
collected in the noisy environments was used for training. The
evaluation results are displayed in Tab. 4. We also measured the
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Figure 13: Three Different Noisy Environments.

Table 4: Evaluation Results in MAE for Different Noisy Environments.

Environments P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 AVG

Quiet Meeting Room (40.6 dB) 31.3 16.7 26.0 20.7 13.4 24.9 20.1 29.4 20.0 39.1 24.2
Play Music (64.5 dB) 35.1 27.6 32.0 17.2 15.2 29.6 29.8 23.3 26.6 36.4 27.3
In Cafe (56.9 dB) 38.7 22.1 38.2 24.5 17.6 25.9 27.0 23.4 28.0 41.6 28.7
On Street (69.3 dB) 47.7 41.9 62.1 51.7 42.9 46.8 44.6 39.8 33.8 54.2 46.6

noise level in each noisy environment for each participant and
showed the average measurement in Tab. 4.

The evaluation results in Tab. 4 demonstrate that the average
MAE for 10 participants remains consistent at 27.3 and 28.7 with
the presence of music noise and cafe noise compared with the MAE
of 24.2 in the quiet environment. There is a small performance
variance for some participants among these three environments
because testing data is not large-scale but overall the system is
resistant to these two noises considering that the prediction is
visually similar to the ground truth when the MAE is below 40 as
discussed in Sec. 5.2. However, the system performance dropped
significantly when the user study was conducted on the street. We
further explore the possible causes below.

We first plotted both the signal with noises and the pure noises
in the frequency domain in Fig. 14. As we can see in the figure,
all three noises are mostly within the audible frequency ranges
and will be filtered out by the band-pass filter in our system. Be-
sides, the strength of the noises is much smaller than the signal
because the sources of these noises are relatively far away from
the microphones in our system. This helps explain why the music
noise and the cafe noise have little impact on the system perfor-
mance. In theory, street noise should also have a limited impact on
the system’s performance. However, the evaluation results suggest
otherwise. Hence, we further analyzed the received acoustic sig-
nal in the frequency domain in different noisy environments. We
used P5’s data as an example for illustration and plotted the signals
under different noisy environments since the signal patterns are
similar among all participants. As shown in Fig. 15, the signals are
very similar to each other in the frequency domain under the first
three environments while the signal looks quite different when
collected on the street. Fig. 14 already shows that the noises have a
limited impact on the signal so we believe this difference is mainly

caused by the temperature difference between indoor and outdoor
environments. According to prior research [13, 53], the frequency
response of both speakers and microphones can be largely impacted
by the temperature of the environment where they operate. The
datasheets of the speakers [27] and the microphones [21] used in
our system suggest that the speakers can be more vulnerable to
the temperature change. Our study was conducted in a cold region
where the outdoor temperature varied from −5°𝐶 to 5°𝐶 when the
testing data on the street was collected for 10 participants while
the indoor room temperature remained between 20°𝐶 to 25°𝐶 .

To further verify this hypothesis, we did one experiment: we
moved the EyeEcho system from the indoor environment (22°𝐶)
to the outdoor environment (1°𝐶) and recorded the received signal
with our system at different times after the system was brought
outdoors. The change of the received signal in the frequency domain
is presented in Fig. 16. As the figure shows, the received signal in the
EyeEcho system visually changed after the temperature decreased.
Since only the on-street testing data was collected outdoors, this
change only affected the system performance for the testing data
collected on the street, because the training data and testing data
are significantly different in this condition.

In summary, our EyeEcho system is robust to different kinds of
daily noises because it operates in the ultrasonic band. However,
our system may need further calibration in the areas where the
temperature is significantly low. This can be achieved by choosing
sensors whose frequency response is more resistant to temper-
ature changes and collecting more training data under different
temperatures. We will explore this in the future.

6.3 Usability of EyeEcho
To explore the usability of the EyeEcho system, participants were
requested to finish a questionnaire at the end of the study in Sec. 6.1.
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Figure 14: Signal with Noises in Frequency Domain and Zoom-in Plots of Noises.

Figure 15: Signal in Frequency Domain under Four Noisy Environments. All figures are plotted using the data collected with P5.

Figure 16: Signal in Frequency Domain at Different Time after EyeEcho being Moved from Indoor (22°𝐶) to Outdoor (1°𝐶).

The participants first rated their overall experience with EyeEcho
by answering two questions: (1) "How comfortable is this wearable
device to wear around the face? (0 most uncomfortable, 5 most com-
fortable)"; (2) "How acceptable do you find the weight of our wearable
device? (0 most unacceptable, 5 most acceptable)". On average, 10
participants gave scores of 4.2 and 4.8 to the two questions above.
All 10 participants agreed with the statement "The pair of glasses
is easy to use." except that P9 reported that "glasses would fall in
a squeeze gesture". As for the question "Compared with normal
glasses, what do you think of this device?", 9 participants thought
that EyeEcho is generally very similar to a pair of normal glasses
while P1 thought it is a little bit more hard to be put on than normal
glasses because the legs of the glasses cannot be bent. Meanwhile,

P3 and P10 suggested that EyeEcho could have selected prescription
lenses for different users in future while P4 believed that it will
be easier to wear EyeEcho if all sensors are completely embedded
into the legs of the glasses. We believe that all these suggestions
are valuable and we will take them into consideration in future
improvement of the prototype design.

At last, we asked participants that "If there is a product like this
to track your facial expressions in future, do you want to use it?".
7 participants answered ’Yes’ to this question while 2 participants
answered ’Maybe". P8’s choice is dependent on the performance
of the system and he "may consider this device if it can perform
nearly as well as existing technology".
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(a) Living Room (b) Bedroom (c) Kitchen

Figure 17: Apartment used for the Semi-in-the-wild Study.

7 EVALUATION OF EYEECHO IN A
SEMI-IN-THE-WILD STUDY

7.1 Study Design
Evaluating a facial expression tracking system in real-world en-
vironments presents significant challenges, primarily due to the
absence of a suitable method for acquiring ground truth data that
users can comfortably wear during their daily activities. For in-
stance, prior research, as well as our own study for both sitting and
walking scenarios in the lab, have relied on placing a camera in front
of the users’ face to capture ground truth data of facial expressions.
However, it becomes nearly impractical to expect participants to
wear a ground truth acquisition device in a completely uncontrolled
environment, where they have the freedom to go to any location
(especially outdoor locations) and engage in any activity (especially
activities such as driving) without the presence of researchers.

The lack of reliable and minimally-obtrusive wearable systems
that can track users’ facial expressions continuously has also been
a significant motivator behind the development of EyeEcho. In our
initial study, we successfully showcased the promising performance
of EyeEcho in a controlled lab setting, where we simulated various
real-world scenarios, including factors like motion and noise. Based
on the exciting results, we also would like to demonstrate that
our proposed system can perform effectively in a more naturalistic
setting since our core sensing principle, which involves tracking
inaudible acoustic reflections on the face, is less susceptible to
environmental influences.

To validate our hypothesis, we designed and conducted a sec-
ond study, referred to as a semi-in-the-wild user study in which
participants engaged in various daily activities within a more natu-
ralistic setting—a one-bedroom apartment. In this study, we aim to
evaluate EyeEcho in an environment as natural as the real-world
setting, while ensuring that the ground-truth acquisition system
works well. To the best of our knowledge, this study marks the
first attempt in the field to evaluate a non-camera-based wearable
facial expression tracking system in a more naturalistic real-world
setting instead of controlled lab settings.

The primary goals of this study are as follows:

• Evaluate the performance of EyeEcho in multiple rooms
within a home environment, where furniture and layouts
vary;

• Assess howwell EyeEcho can track natural facial expressions
that occur during various daily activities.

7.2 Study Environment and Activities
The study was conducted in a one-bedroom apartment of a re-
searcher off campus, with three rooms: the living room, bedroom,
and kitchen, as depicted in Fig. 17. The participants were instructed
to perform different activities in a random order while wearing the
experimental devices within these rooms, as follows:

• Living room: Watching videos on a computer, reading, de-
scribing things, having conversation with the researcher
while walking around;

• Bedroom: Watching videos on a computer, reading, describ-
ing things, having conversation with the researcher while
making the bed;

• Kitchen: Watching videos on a computer, describing things,
having conversation with the researcher while washing the
dishes and using the microwave oven.

These activities were intentionally designed to elicit a range of
natural facial expressions and movements that happen in everyday
life. For example, the videos that participants watched included
online videos categorized to specifically evoke different emotional
experiences1 and pre-selected YouTube videos consisting of var-
ious funny/scary scenes that happened in a movie or in real life.
Watching these videos led to spontaneous and varied facial expres-
sions. While reading, describing things and having conversations,
participants had facial movements frequently. According to the
standard defined in Sec. 5.1.2, among all the frames collected in this
user study, there are 84.4% and 24.6% frames in which participants
deformed their face with a degree of deformation over 50 and 100,
respectively. This is comparable to the degrees of deformation that
the participants performed in the in-lab study.

7.3 Study Procedure
For this semi-in-the-wild study, we recruited 10 participants (8
female, 2 male) with an average age of 23 years. Each participant
received USD $20 compensation for each study day. The study was
conducted in the one-bedroom apartment as detailed above.

1https://www.alancowen.com/video

https://www.alancowen.com/video
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(a) MAE vs. Participants (without fine-tuning) (b) MAE vs. Experiment Rooms (without and with fine-
tuning)

Figure 18: Performance of EyeEcho for the Semi-in-the-wild Study.

Throughout the study, the participants wore the glasses embed-
ded with the EyeEcho system and a chest mount, as used in the
walking study, to facilitate ground truth capture via an iPhone
placed in front of them. The chest mount was tested for comfort
and usability before the study. Each participant completed the study
over two days with a gap less than one week, engaging in various
activities as described earlier. On the first day, participants con-
ducted a 10-minute training session in the living room, followed
by 10-minute testing sessions in all three rooms. The order of the
rooms was randomized. On the second day, participants completed
10-minute testing sessions in all three rooms, with no additional
training data collected. In total, each participant contributed ap-
proximately 70 minutes of data (10 minutes training on Day One,
60 minutes testing on both days). The entire study duration for
each participant did not exceed 2.5 hours.

In the study, a researcher remained outside the experiment room
to provide instructions and engage in conversations with partici-
pants via smartphone, simulating real-world scenarios where users
may have video conferences while multitasking or moving around
without a camera continuously in front of them.

7.4 Study Results
7.4.1 Evaluation Protocol. To predict the facial expressions per-
formed by participants in the semi-in-the-wild study, we utilized
the same deep learning model described in Sec. 4.3. Initially, we
trained a large base model using all the data collected during the
in-lab study, as outlined in Sec. 5. This included data from both
sitting and walking scenarios. Please note that there was no overlap
between the two groups of participants in the two studies. Incorpo-
rating more data resulted in improved performance compared to
solely using data collected in the second user study (semi-in-the-
wild) as training data, based on our preliminary experiments in
pilot studies. Subsequently, we conducted further training on the
large base model using the 10-minute training data collected in the
living room on the first day for each participant.

7.4.2 Data Augmentation for Enhanced Model Robustness. During
the training process, we implemented two data augmentation meth-
ods to enhance the robustness of our system. 1) Firstly, we applied
random vertical shifts to the input differential echo profiles to miti-
gate the impact of device remounting; 2) Secondly, we introduced
random walking patterns, collected by a researcher, into the train-
ing data to augment the model’s ability to make predictions while
participants were walking. These data augmentation techniques
were employed to improve the model’s performance and ensure its
adaptability to varying conditions and scenarios.

7.4.3 Results. The evaluation results across different participants
are shown in Fig. 18 (a). On average, the MAE across 10 partici-
pants are 44.4 and 45.5 for Day One and Day Two. Separately, the
MAE are 36.7, 43.8 and 52.7 for the living room, the bedroom and
the kitchen on Day One and are 40.7, 47.4 and 48.3 for these three
rooms on Day Two. This performance was achieved when we only
collected 10-minute training data in the living room on Day One
for each participant. The living room has the best performance
because the training data was only collected in it. The kitchen has
a relatively worse performance because the activities performed in
it had more differences from those performed in the living room.
Please note that P9 has the worst performance among all partici-
pants because this participant wore a Hijab (a head covering) during
the study which we believe partially blocked the transmission and
reflection of the signals. We ran a repeated measures t-test between
the average MAE of three rooms on two different days across 10
participants and did not find a statistically significant difference
(𝑡 (9) = 0.79, 𝑝 = 0.45 > 0.05). This proves that the performance of
our system maintains solid across different days and users do not
have to collect new training data on different days.

7.4.4 Fine-tuned results. To further boost the performance of the
system, we used 30-second data at the beginning of each 10-minute
session to fine-tune the trained model for this session. The compar-
ison between results with and without fine-tuning is demonstrated
in Fig. 18 (b). As shown in the figure, fine-tuning improved the
overall MAE from 44.4 to 40.3 for Day One and from 45.5 to 41.7 for
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Figure 19: Visualized Results for Semi-in-the-wild Study. Datapoint: P (Participant), D (Day), L (Living Room), B (Bedroom), K
(Kitchen).

Day Two. Specifically: (1) for the living room, MAE was improved
from 36.7 to 35.3 on Day One and from 40.7 to 38.2 on Day Two; (2)
for the bedroom, it was improved from 43.8 to 40.7 on Day One and
from 47.4 to 45.1 on Day Two; (3) for the kitchen, it was improved
from 52.7 to 44.7 on Day One and from 48.3 to 41.9 on Day Two. The
fine-tuning mainly improves the performance of our system in a
new room where no training data was collected before and it can be
done only once in this room. Although fine-tuning with 30-second
data improves the performance of our system, it might impact users’
experience when they use our system in the real world. However,
we believe that the results without fine-tuning (44.4 for Day One
and 45.5 for Day Two on average) are also acceptable even though
they are not as good as the in-lab results because the prediction is
still visually similar to the ground truth when MAE is around 40
according to the analysis in Sec. 5.2 and Sec. 5.3.2. If we can collect
more training data in various scenarios from more participants in
the future, the performance of our system can be further improved
even without the fine-tuning process.

7.4.5 Visualized Results. To help readers better understand the per-
formance of our system, we visually illustrate its ability to track fa-
cial expressions in the semi-in-the-wild study, as we did in Sec. 5.3.2.
We selected frames with different MAE from the data we collected
in this study to show the visualized output results of facial expres-
sions. We selected 3 frames from each of the two typical activities
during which participants had frequent facial expressions, watching
videos and talking. The results are shown in Fig. 19.

As we can see in Fig. 19, a prediction with an MAE of around
40 is visually similar to the ground truth. According to Fig. 18
(b), our EyeEcho system reaches an average MAE of 44.4 and 45.5
for Day One and Day Two without fine-tuning. This validates the
performance of our system in this semi-in-the-wild study, where
users conducted activities in different rooms and used the device
on different days. Furthermore, in this study, participants played
the sound while they were watching videos and created loud noise
while they were using the microwave oven and washing the dishes.

This confirms that our system is not easily impacted by common
daily noises.

8 DISCUSSION
8.1 Power Consumption Analysis
We used a current ranger and a multimeter to measure the current
and voltage of our EyeEcho system while all components were
in operation. The measurements showed that the current flowing
through our system was 41.1𝑚𝐴 at the voltage of 4.07𝑉 . There-
fore, the power consumption of EyeEcho is around 167𝑚𝑊 . This
power consumption should allow EyeEcho towork on current smart
glasses or AR glasses for a reasonable period of time.

Smart glasses often come with limited battery size due to their
compact device size. For instance, Amazon Echo Framewith 4 speak-
ers can last about 2 hours with audio on [48]. The Ray-ban Stories
Smart Glasses have a battery capacity of 167𝑚𝐴ℎ [56]. If EyeEcho
is deployed on it and used alone, the glasses can last 4 hours in
theory. On the other hand, AR glasses often come with a larger
size and battery life. For instance, the battery capacity of Google
Glass, Espon Moverio, and Microsoft HoloLens are 570𝑚𝐴ℎ [69],
3400𝑚𝐴ℎ [9] and 16500𝑚𝐴ℎ [47], guaranteeing around 14, 83, and
402 hours of battery life in theory, if EyeEcho is used alone.

As stated above, our power consumption is already relatively
low, especially compared to using cameras for facial expression
tracking. However, what we present in this paper is just a start-
ing point. The power consumption of our system can be further
optimized in the future. For instance, our measurement indicates
that the two speakers take up about 80% (135𝑚𝑊 ) of the system’s
power consumption (167𝑚𝑊 ). Therefore, depending on applica-
tions, EyeEcho, especially the speakers, do not need to be turned on
all the time. Besides, reducing the loudness of the speakers and/or
using high-efficiency speakers can also lead to lower power con-
sumption. For instance, we replaced the two speakers in our system
(SR6438NWS-000) with two speakers that are more power-efficient,
OWR-05049T-38D [4] as shown in Fig. 20, and adjusted the Sound
Pressure Level (SPL) to the same value as the previous speakers.
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Then we measured the current flowing through the system again
and got the value 17.3𝑚𝐴 with the new speakers, which gave us a
power consumption of 71𝑚𝑊 . This validated that EyeEcho’s power
can be further reduced by adopting more power-efficient speakers.

Figure 20: Comparison of Two Speakers: SR6438NWS-000
(Left) and OWR-05049T-38D (Right).

8.2 Real-time Deployment on Smartphones
To demonstrate how EyeEcho can be integrated with commercial de-
vices, we deployed the data processing and deep learning pipeline of
EyeEcho with the help of PyTorch Mobile [1] on an Android smart-
phone (Xiaomi Redmi K40, Android 12, Qualcomm Snapdragon
870 SoC). Keeping the algorithms deployed on the smartphone will
eliminate the need to transmit the data to a server on the cloud,
which can better preserve the privacy of the user.

In order to keep the algorithm making predictions fast enough
in real-time, we replaced the deep learning model with a ResNet-18
architecture. To demonstrate that this lighter model results in a
similar performance, we trained the lighter model (ResNet-18) in
the same way as we did in Sec. 5.3 for the sitting scenario, achieving
comparable performance with the full model (23.1 vs 22.9). For the
usage of the real-time pipeline, we first trained the deep learning
model with the data collected from users in PyTorch on a NVIDIA
GeForce RTX 2080 Ti GPU. Then we traced the trained model
to make it applicable to deployment on smartphones. The traced
model was loaded onto the Android phone (Xiaomi Redmi K40) and
used in the Android application we developed for data collection
and facial expression prediction. During the inference stage, the
running App continuously received data streamed from the BLE
module in our EyeEcho system via Bluetooth, preprocessed the
received data (i.e. organizing data based on channels, filtering the
raw data, and calculating the echo frames), and fed echo profiles
into the traced deep learning model for predictions. The predicted
blendshape parameters representing users’ facial expressions were
finally streamed from the smartphone to a laptop via Wi-Fi for
downstream applications. On average, it took 34𝑚𝑠 to make one
inference, which led to a refresh rate of 29 FPS. We believe that
this is sufficient for most applications since most videos can be
played at 30 FPS. With the system implemented on the smartphone,
we were able to predict users’ facial expressions in real-time and
rendered them with a personalized avatar powered by Avaturn2, as
shown in Fig. 21.

8.3 Evaluating Blink Detection
Blinking is an important part of facial movements and can be used
to monitor health conditions and help diagnose many eye diseases
of users [8, 49]. In the past, in order to detect blinks, separate sensors
2https://avaturn.me/

Figure 21: Real-time Pipeline Implemented on a Phone with
Personalized Avatar Powered by Avaturn.

have been installed on glasses, such as cameras [75] and capacitive
sensor [37]. To be best of our knowledge, there is no acoustic-based
system that can detect blinks based on skin deformations around
the cheeks.

In our preliminary experiments, we noticed that blinks also lead
to substantial deformations on tissue and skin around the face. This
was visually evident in the echo profiles extracted from the received
acoustic data. Consequently, we believe that, in addition to tracking
facial expressions, our system has the capacity to detect blinks.

To evaluate the feasibility of EyeEcho for blink detection, we
conducted a follow-up study with 6 participants. In this follow-up
study, we asked each participant to watch some video clips of land-
scapes while wearing the EyeEcho system.We did not instruct them
to blink intentionally. Instead, EyeEcho system detected the natural
blinks of participants while watching these videos. While wearing
the EyeEcho device, they watched five 2-min video clips. Between
two videos, they remounted the device. For the five sessions of
data, we ran a 5-fold cross-validation using 4 sessions to train the
model and testing on the remaining session. During training, we
only used 2 out of 52 blendshape parameters that are related to
blinking (eyeBlink_L/R) as the ground truth for the model to op-
timize blinking detection performance. The average F1 score of
blinking detection across 6 participants was 82% (𝑠𝑡𝑑 = 12%) for
our system. It’s important to note that EyeEcho was not specifi-
cally designed for blink detection, so performance could be further
enhanced by incorporating additional sensors positioned closer to
the eyes on glasses and oriented directly towards the eyes. This
study aims to showcase the potential feasibility of using EyeEcho
to simultaneously track facial expressions and blinks.

8.4 Long-term Evaluation of the System
Over time, the prediction of the system could becomeworse because
the user’s body status is changing every day and will not be exactly
the same as the day when the training data is collected. In the semi-
in-the-wild study in Sec. 7, we validated that our system still works
well on Day Two when training data is collected on Day One. In this
subsection, we would like to conduct a more thorough long-term
evaluation of the system. Thus two researchers collected the same
amount of training data as we did in the in-lab user study and tested
the performance of the system on the same day as well as 1 day,
2 days, 1 week and 2 weeks after the training data was collected.

https://avaturn.me/
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The average testing results are shown in Tab. 5. The average MAE
across the two researchers are 19.9, 33.6, 40.4, 36.3 and 36.0 for the
test data collected on the same day and 1 day, 2 days, 1 week and
2 weeks after the training data was collected. The result shows
that the performance of our system decreases over time but is still
good enough even after 2 weeks, based on analysis in Sec. 5.2 and
Sec. 5.3.2, which proves the stability of our EyeEcho system.

Table 5: Long-term Evaluation Results.

0 Day 1 Day 2 Days 1 Week 2 Weeks

MAE 19.9 33.6 40.4 36.3 36.0

8.5 Comparison with EarIO
8.5.1 Different form factors and sensor positions to track differ-
ent movements. EarIO [34] bears close relevance to EyeEcho as
both utilize active acoustic sensing for continuous facial expression
tracking. However, EarIO places sensors on a pair of earphones
with a 3D-printed attachment to monitor movements beneath the
ears, whereas EyeEcho enables facial expression tracking on glasses
with sensors placed on the legs of the glasses to capture skin de-
formations around the eyes and cheeks. These differing hardware
configurations result in distinct performance and limitations. Fur-
thermore, the use of earphones differs significantly from that of
glasses. While many people are used to wearing glasses throughout
the day, most people may not be comfortable wearing earphones
for daily activities. Therefore, even though earphones have the
capability to track facial expressions, it remains essential to explore
the tracking of facial expressions on glasses.

To enable a comprehensive and rigorous comparison between
EyeEcho and EarIO, we reproduced the EarIO system, including
algorithms and data and conducted a side-by-side evaluation.

8.5.2 Better performance with less training data. First, the full user
study of EyeEcho and EarIO employed the same ground truth acqui-
sition method (TrueDepth camera) and evaluation metrics (MAE).
Based on the results displayed in Tab. 6, EyeEcho with 20 minutes
of training data outperforms EarIO with 32 minutes of training
data in both static settings (22.9 vs 25.9 in MAE) and mobile set-
tings (26.9 vs 33.9 in MAE), indicating improved robustness. In the
meantime, if EyeEcho only uses 4 minutes of training data, it still
achieves comparable performance to EarIO which uses 32 minutes
of training data (29.7 vs 25.9 for sitting and 34.3 vs 33.9 for walking).
This demonstrates that to obtain a similar tracking performance,
EyeEcho only requires 12.5% training data compared with EarIO (4
mins vs 32 mins).

8.5.3 New ability to detect blinking. As described in Sec. 8.3, Ey-
eEcho achieves an F1-score of 82% for blinking detection across
different sessions. EarIO did not conduct studies on blinking de-
tection. Therefore, we replicated the sensing system of EarIO and
implemented similar blinking detection algorithms from our sys-
tem. To compare two systems side by side, three researchers and
one participant evaluated blinking detection using both EyeEcho
and EarIO with a similar study procedure and setup as Sec. 8.3.
To better demonstrate the best performance of each system for

blinking detection, we collected data within one session for this
experiment. Results show that EyeEcho can detect blinks with an
F1 score of 99% while EarIO achieved an F1-score of 0% even within
one session across these four people. We believe this is because
the movements behind the ear and chin, which EarIO captures,
are not sensitive to subtle eye movements compared to the skin
deformations around the cheeks, captured by EyeEcho.

8.5.4 Better stability over a long period of time. In addition, we also
tested the facial expression tracking performance of both systems
in a longitude study. EyeEcho maintains consistent performance
even after 2 weeks, as illustrated in Sec. 8.4. By contrast, tested by
one researcher, the performance of EarIO degrades significantly
from 20.5 to 47.1, 42.7, and 51.2 in MAE when tested 2 hours, 12
hours and 1 day after training data was collected. It indicated that
our system can have better stability if being deployed in a long
period of time. We think this is because the glass frame is more
stable compared to earables. For instance, the wearing position of
glass frames is relatively consistent while the wearing position of
earables can shift after each remounting session.

In summary, the results from these preliminary studies showed
that EyeEcho outperforms EarIO [34] in terms of performance,
the training data needed, the ability to detect blinks, and stability.
Moreover, EyeEcho includes a semi-in-the-wild evaluation, demon-
strating consistent performance in naturalistic settings, while EarIO
was only evaluated in controlled lab settings.

8.6 Health Implications
In Sec. 6.1, we validated that EyeEcho can operate in the frequency
range 20−24𝑘𝐻𝑧, which is inaudible to users. However, even though
the users cannot hear the signal, it may still cause health concerns to
them. Thus, we used theNIOSH Sound LevelMeter App3 tomeasure
the signal level of the EyeEcho system. We kept the speakers in the
system emitting the signals and attached the microphones of the
phone with the NIOSH app running directly onto the speakers. The
average sound level measured was 48.2 dB. When we moved the
microphones of the phone to the same distance from the speakers
of EyeEcho as where the users’ ears will be if they wear the system,
the measurement of the sound level was 37.8 dB. According to
Howard et al. [15], the recommended ultrasound exposure limit for
frequency around 20𝑘𝐻𝑧 is 75 dB. Therefore, we believe that our
EyeEcho system is safe to wear for long-term use since the sound
level is far from the recommended limit.

8.7 Privacy Preservation Mechanisms in
EyeEcho

EyeEcho can preserve privacy by avoiding the use of cameras and
limiting the frequency range of the sensing system. EyeEcho uses a
band-pass filter to remove all frequencies other than 16 − 20𝑘𝐻𝑧 in
the received signal, which means that all audible sounds including
heavy privacy information (e.g., human speaking, environmental
sounds) are removed. Furthermore, we also demonstrated that Eye-
Echo can conduct all computations locally on a smartphone without
sending any data over the Internet in Sec. 8.2. In this way, sensitive
information stays confidential because only the predicted facial

3https://www.cdc.gov/niosh/topics/noise/app.html

https://www.cdc.gov/niosh/topics/noise/app.html
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Table 6: Comparison with EarIO in MAE and Training Data Needed.

Project Training Data Needed Performance in Sitting Scenario Performance in Walking Scenario

EyeEcho 4 Minutes 29.7 (MAE) 34.3 (MAE)
20 Minutes 22.9 (MAE) 26.9 (MAE)

EarIO [34] 32 Minutes 25.9 (MAE) 33.9 (MAE)

expressions represented by 52 parameters instead of the original
signals captured by microphones are shared with others. With fu-
ture advancement in low-power on-chip deep learning, it is also
possible to deploy everything on a single chip, further eliminating
the privacy and security risks.

8.8 Applications on Commodity Devices
Enabling facial expression tracking on glasses have a wide range
of applications, from enhancing video conferencing experience
to novel input methods. Video conferencing, a common mode of
communication, can be significantly improved using our system.
Currently, during online video conferences, participants must po-
sition themselves in front of a camera or hold it to ensure others
can see their facial expressions. However, with EyeEcho integrated
into smart glasses, users can engage in real-time video conferences
and convey facial expressions effortlessly, even while walking or
multitasking. We have implemented a system capable of generat-
ing personalized avatars with facial expressions for each user, as
detailed in Sec. 8.2. Consequently, the user experience in video
conferencing with EyeEcho resembles traditional camera-based
methods, but with the added convenience of hands-free operation.

Facial expressions can also serve as a novel input method, a con-
cept has been explored in previous research efforts [30, 43, 44, 51].
Our glasses-based system is well-suited for implementing this func-
tionality, allowing different facial expressions to serve as distinct
commands for interacting with smart or augmented reality glasses.

Moreover, facial expressions are linked to various health condi-
tions. For instance, individuals with Parkinson’s disease may expe-
rience a loss of facial expressions. EyeEcho can be instrumental in
tracking and monitoring the symptoms of such diseases, potentially
contributing to improved healthcare outcomes.

8.9 Limitations and Future Work
Despite the promising performance, EyeEcho also has limitations
that need further investigation.

8.9.1 Impact of Vigorous Exercises. The system performance might
be negatively impacted if the user conducts vigorous exercises (e.g.,
shaking heads, and running). This can potentially be alleviated if
we improve the form factor design and collect training data from
these sessions.

8.9.2 More Diverse Evaluation Settings and Environments. We only
evaluated the system when the participants were performing a
selected set of facial expressions in our in-lab study. In the semi-in-
the-wild study, we only conducted the study in an apartment. The
goal of this paper is to demonstrate the feasibility of the first acous-
tic continuous facial expression tracking system on glasses. We

plan to assess the system in more daily settings and environments
(e.g., offices, classrooms, dining halls) in the future.

8.9.3 Environmental Impact. Although we validated that our sys-
tem works equally well at the frequency range of 20−24𝑘𝐻𝑧, which
is inaudible to most people, it may still be heard by certain peo-
ple (especially kids) and animals. We will conduct experiments to
understand how our system impacts the environment and choose
frequency and sensors accordingly.

8.9.4 Impact of Real-world Factors. Even if it did not happen in our
user study, it is possible that certain types of long hair can cover the
sensors which may lead to the failure of the sensing system. People
with heavy beards on their cheeks may also encounter problems
while using this system. This can be a limitation of this sensing
system.

8.9.5 Explore More Sensor Positions. While prototyping EyeEcho,
we explored three sensor positions on glasses which we thought
are most likely to deploy sensors and picked the one that achieved
the best performance and obtrusiveness. We plan to explore more
possible positions on glasses to determine the optimal one for our
system.

9 CONCLUSION
This paper introduces EyeEcho, a low-power and minimally ob-
trusive technology designed for glasses that enables continuous
facial expression tracking. It represents the first successful imple-
mentation of on-device acoustic sensing for tracking facial expres-
sions continuously. The system’s capabilities were assessed through
both in-lab and semi-in-the-wild studies, revealing promising per-
formance across diverse scenarios. Additionally, we successfully
demonstrated the system can be deployed on an off-the-shelf smart-
phone for real-time processing. These outcomes underscore the
significant potential for EyeEcho to be integrated into future smart
glasses for real-world applications.
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