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In this paper, we present FingerTrak, a minimal-obtrusive wristband that enables continuous 3D finger tracking and hand
pose estimation with four miniature thermal cameras mounted closely on a form-fitting wristband. FingerTrak explores the
feasibility of continuously reconstructing the entire hand postures (20 finger joints positions) without the needs of seeing all
fingers. We demonstrate that our system is able to estimate the entire hand posture by observing only the outline of the hand,
i.e., hand silhouettes from the wrist using low-resolution (32 × 24) thermal cameras. A customized deep neural network is
developed to learn to ”stitch” these multi-view images and estimate 20 joints positions in 3D space. Our user study with 11
participants shows that the system can achieve an average angular error of 6.46◦ when tested under the same background,
and 8.06◦ when tested under a different background. FingerTrak also shows encouraging results with the re-mounting of the
device and has the potential to reconstruct some of the complicated poses. We conclude this paper with further discussions of
the opportunities and challenges of this technology.
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1 INTRODUCTION
Hand gesture recognition has been a well-established research topic in the human-computer interaction (HCI)
community for years, as it enables a variety of interactive applications, such as input in VR or AR [19], acces-
sibility [46], human robot interaction (HRI) [11], and wearable user interfaces [25, 55]. Many traditional hand
pose estimation and gesture recognition technologies are based on computer vision using cameras placed in the
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Fig. 1. Continuous hand pose estimation results using FingerTrak. Each column presents a result for a time step. From top to
bottom: ground truth hand pose; predicted hand pose; and the thermal images captured by the wearable cameras.

background [4, 34, 35, 41, 49, 50], with the design that these cameras can capture the various views of the hand.
Unfortunately, these technologies do not work well when the cameras cannot fully view the user’s hand, and
they also require a pre-instrumentation of the environment, which brings inconvenience for a user when facing
a flexible situation. With the development of portable computers, especially wearables, there is a significant
enrichment for the interaction scenarios, and the users need to interact with their computing interfaces using a
more robust, convenient, and minimal-obtrusive device.
To address this need, many researchers developed wearable technologies with different sensing capacities to

recognize hand postures. These projects can be categorized into two parts based on their recognition results:
1) discrete hand pose classification [53, 54, 56, 57]; and 2) continues hand posture reconstructions [25]. The
majority of the prior work on wearable gesture recognition falls into the first category, and seeks to distinguish
a pre-selected set of discrete hand poses or gestures using different sensing modality such as acoustic [54],
cameras [25, 53], bio-impedance [56], pressure sensor [33]. However, these technologies cannot reconstruct the
entire posture of the fingers. As a consequence, the applications of the these technologies largely depend on the
pre-selected gestures that are challenging to be generalized to others.
Continuously reconstructing the hand posture provides a large potential for a number of applications. Un-

fortunately, most of these technologies that can reconstruct the complete hand postures use cameras in the
background and does not work in mobile settings. Compared to discrete hand postures, it is very challenging
to continuously reconstruct the entire hand postures using a wearable device, as it is hard to capture enough
information about the hand. The most popular wearable technologies for full hand posture estimation make use
of glove-like devices popular in professional settings such as movie industry. However, these glove-like devices
are less practical and inconvenient for daily usage. Based on our knowledge, we have only observed a limited
amount of prior work that can continuously reconstruct the entire hand postures using a glove-less wearable
device. The only one that falls into this category is Digits [25]. Digits places an IR emitter and a camera on the
bottom of the wrist to capture the fingers and extracts the finger positions from the captured images, based on
which other finger joint positions can be calculated using inverse kinematics (IK). Digits requires the camera to
see all fingers, and thus part of the camera system has to sit high enough on the wrist and even go beyond the
wrist towards the palm. Furthermore, it also will not work when the fingers are blocked from the view of the
camera when the hand is moving or rotating or holding objects.
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The major challenge of all the previous camera-based finger reconstruction system is that the cameras have to
capture the entire fingers to estimate the entire hand posture. In order to help wearable cameras on the wrist to
observe the complete set of fingers, the cameras usually have to sit on a relatively high position on the wrist,
making the wearable system bulky and less practical/comfortable. Furthermore, if the hand is rotating or moving,
the system may fail as the fingers may be blocked by the palm. This limits the expressiveness of the hand postures
the system can recognize.
Our key research question is that whether we can reconstruct the entire hand posture using a wearable camera

technology, which does not require seeing all the fingers. In order to explore this research question, we developed
FingerTrak, a minimal-obtrusive wristband that enables continuous 3D finger tracking without the need to observe
all fingers. FingerTrak consists of four miniature thermal cameras (9.3 mm x 9.3 mm x 5.7 mm) mounted closely
on a form-fitting wristband (2 mm on top of the skin) which can provide the user with minimal distraction and
is flexible for different backgrounds. Instead of directly capturing the position of fingers as all prior work did,
FingerTrak takes the advantage of the four cameras on the wrist to capture the outline of the hand, which we find
very informative on estimating the entire hand posture including 20 finger joints positions. The captured images
are sent to a customized deep neural network that learns to “stitch” the captured images from multiple views and
estimate 20 finger joints positions in 3D space at a frame rate of 16 Hz. A user study with 11 participants showed
that FingerTrak can continuously reconstruct the 20 finger joint positions with an average displacement error of
1.2 cm. We also evaluated FingerTrak under a variety of settings, including different backgrounds, different arm
postures and when the user’s hand is holding objects. To our knowledge, we are the first wearable technology that
attempts to reconstruct the entire hand posture when the hand is holding objects. Furthermore, we discuss the
limitations and potential improvements of our technology in the paper.
The contributions of the paper are:
• We developed a wearable system, using a wristband with four miniature thermal cameras (1.19 cm above
the skin) to capture the outline of the hand. We demonstrate that we can estimate the 20 finger joints
positions (entire hand) in 3D space by only observing the outline of the hand (hand silhouettes) from the
wrist using a deep neural networks.

• We conducted a user study with 11 participants to evaluate the performance of the system under different
scenarios, including different backgrounds, different arm postures and holding objects in the hand.

• We discussed the opportunities, challenges and limitations of applying FingerTrak in real-world applications.
In the rest part of the paper, we will review previous work and highlight the innovation of FingerTrak. We

then present the underlying theory, design and implementation, and empirical evaluation of the system. Finally,
we discuss the opportunities and limitations of this novel technology.

2 RELATED WORK
Hand pose estimation has been a focus among communities of human-computer interaction, computer vision and
graphics. Researchers have explored various sensing modalities and form factors, and the placement of sensors
to address this research challenge. We discuss methods that estimate hand poses using external sensors and
wearable sensors, followed by a review of the most relevant work on sensing hands using wrist-mounted devices.

2.1 Hand Posture Recognition Using Non-wearable Sensing
Camera-based hand posture estimation has received considerable attention in both computer vision and graphics
communities. Commercial marker-based motion capture systems, such as Vicon,1 have been developed for hand
tracking. These systems require not only the placement of markers on the body of the user but also heavy
instrumentation of the environment. Recent efforts are thus focused on marker-less hand tracking. Given a
1https://www.vicon.com/
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prior 3D model of the hand, a user’s hand pose can be reconstructed by fitting the model with images from
either multiple cameras [35] or a single depth camera [34, 37], or even a monocular camera [9]. More recently,
researchers started to apply machine learning models to directly estimate hand postures from images [14, 22, 41–
43, 49, 50, 59]. Learning-based methods incorporating the shape and pose of hands has demonstrated improved
results to approaches with no prior information about the hand. Nonetheless, these vision-based methods
require externally fixed cameras and, as a result, limiting these methods for daily interaction and making these
technologies less suited to mobile and ubiquitous uses.
Going beyond cameras, Li et al. [29] have presented a system for tracking hand postures using an imaging

system that combines a LED array in a lampshade andmultiple photodiodes on the base of the lamp. However, their
sensing range is limited to the size of a lamp. To enable hand tracking over a more extensive range, researchers
explored several new methods using Wi-Fi [23, 48] or acoustic sensors [36] for hand sensing. However, these
methods can only recover the motion of hands but not the posture of fingers.

2.2 Recognizing Hand Postures from Non-wrist Mounted Wearable Devices
Mounting sensors on the user’s body removes the need for external sensors, thus allowing applications to interact
in mobile settings. The most common form factor that has been used for hand pose tracking is gloves. These
gloves usually are embedded with multiple sensors to capture the motion of the palm and fingers, and these
signals are further assembled into full 3D hand pose by using optimization techniques. For example, gloves
based on inertia measurement units (IMU) have been explored in [8, 31]. Other sensing modalities have also
been considered, including bend (flex) sensors gloves [7, 27], strain sensors gloves [6, 15] and stretchable sensor
arrays [16]. Glove providing a good solution for many application settings, such as motion capturing in movie
industry. However, many people may still not be comfortable wearing gloves in daily activities.

Other than gloves, Rogez et al. showed that a chest-mounted depth camera can be used to estimate the user’s
hand pose [38]. However, the chest-mounted camera can only capture the hands when they are in front of the
chest and fully exposed to the camera. Discrete hand gestures can also be recognized by using a shoe-mounted
camera [1] and a handheld device [40]. Another appealing approach for hand tracking [30] is to use head-mounted
cameras widely available in many off-the-shelf commercial devices such as Oculus Quest, HTC Vive Pro, and
Microsoft Hololens.2 Nonetheless, these head-mounted devices are designed for AR/VR applications and cannot
be used to estimate hand pose without the headset, making them less convenient for every day use.

2.3 Recognizing Hand Postures Using Wrist-mounted Devices
In comparison to other form factors, users tend to be more acceptable to wrist-mounted devices such as smart-
watches and wristbands, as people are used to wear watches for years. Therefore, many wrist-mounted devices
have been developed to recognize hand gestures. For example, the sensors in a commodity smartwatches was
explored for recognizing discrete hand gesture [52, 58]. Customized wrist-mounted devices with different sensing
modalities were also built for hand pose recognition, including wrist-worn pressure sensors [10], infrared proxim-
ity sensors [26], distance sensors [12], surface electromyography sensors [24], and active acoustic sensors [33, 54].
However, these techniques can only recognize discrete gestures, which is limited in many scenarios.

Cameras can be also mounted on the user’s arm [44] or wrist [51, 53] to recognize two-handed or one-handed
discrete poses and gestures. The most relevant work is Digits [25]. Digits mounted an active IR camera system
on the bottom of the wrist to capture the positions of fingertips, and used inverse kinematics (IK) to estimate
the positions of other finger joints. However, Digits requires the IR camera on the wrist to always seeing the
positions of all fingers. Therefore, the camera has to sit high enough on the wrist and even go beyond the wrist
towards the palm. Apparently, it will not work when the fingers are blocked from the view of the camera. For

2https://www.oculus.com/, https://www.vive.com/us/product/, https://www.microsoft.com/en-us/hololens/
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Fig. 2. Sample images and results from our synthetic dataset. Left: an example of a synthetic 3D hand at a random pose and
shape; Middle: hand silhouettes captured by 4 virtual cameras; Right: A comparison between the predicted 3D hand pose
(green) and the ground truth (blue).

instance, when the hand moves upward from the wrist or holds objects in the hands. This significantly limits
the expressiveness of the hand postures the system can recognize. The latest work that shares a similar spirit
with FingerTrak is from [53]. Their method observes the outline on the back of hand using a commercial depth
camera (Leap Motion). Their camera is sitting at a much higher position on the wrist, and can only recognize
discrete gestures. In comparison to [53], FingerTrak is not only smaller, more comfortable, but also more capable.

FingerTrak is the first wrist-mounted device that can reconstruct the entire hand pose (20 finger joints positions)
by learning the outline shape of the hand captured by 4 miniature thermal cameras sitting tightly on the wrist.
A key innovation of FingerTrak is that it does not require the system to observe the fingers to reconstruct the
entire hand pose. It is thus possible to estimate the hand poses even when the hand is occupied with objects, as
we will demonstrate in our user study.

3 FINGERTRAK: FROM THEORY TO PRACTICE
Consider a set of hand silhouettes (outlines of the hand) captured at different viewpoints, e.g., those in Figure 2
(middle). Can we estimate the hand pose from those silhouette images? The problem is fundamentally ambiguous
as different hand poses might produce the same silhouette due to viewpoint variation and self-occlusion. However,
the ambiguity can be largely reduced by fitting a prior 3D hand model to multiple silhouettes from different
angles, where the 3D model and multi-view hand contours constrain the underlying 3D shape of the hand.
This idea of using silhouettes for 3D shape reconstruction, also known as Shape-From-Silhouette (SFS), was

first discussed by Baumgart [5] in 1974. SFS has since received considerable attention in computer vision and
graphics communities [2], and has been used for markerless human body motion tracking [3]. We build on the
idea of using SFS for markerless human tracking, and develop a wrist-worn wearable system for continuous 3D
hand posture tracking. At the core of our system lies in the idea of using multiple wrist-worn cameras to capture
hand silhouette images, and to further reconstruct the 3D pose of the hand. Our research hypothesis is that it is
possible to accurately estimate 3D hand posture by only combining multi-view hand silhouettes(outline) with the
prior knowledge of a 3D hand model.

To evaluate the feasibility of our hypothesis, we start with a synthetically rendered image dataset, which was
generated by virtual cameras on the wrist of a 3D hand mesh model [39], as shown in Figure 2. Furthermore, we
develop a deep neural network to estimate hand pose from these synthetic images. The initial result was very
encouraging, which further motivated us to design and implement the prototype of FingerTrak. In the reset part
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Fig. 3. Our deep model for 3D hand pose estimation. The model takes multiple hand silhouette images captured by wrist-worn
cameras as input. Each image is feed into a convolutional neural network (CNN). Their features are concatenated and sent to
a regression network, which outputs the parameters of 3D hand pose.

of this section, we will present the details on the creation of synthetic hands, our deep learning model, and the
design and implementation of the FingerTrak system.

3.1 Generating Synthetic Multi-view Hand Silhouettes
As a starting point, we create a pipeline for generating synthetic hand images to facilitate the verification of our
research hypothesis. To this end, we make use of MANO—a parametric model for hands [39]. MANO contains
two sets of parameters that control hand shape and pose respectively. In order to simulate different hand shapes
and postures, we randomly sample these shapes and pose parameters from a Gaussian distribution, place different
number of virtual cameras on the wrist (equally spaced) and render the resulting multi-view hand images using
Blender.3 As a proxy to hand silhouette images, we consider a black background with a white foreground hand. A
major advantage of using synthetic hand images is that we can easily control number of cameras and the position
of the cameras to generate millions of pictures to verify critical system design decisions, including the number
and positioning of cameras, the number of training samples and the neural network design. Figure 2 (middle)
shows an example from our synthetic data set captured by 4 virtual cameras.

3.2 From Multi-view Hand Silhouettes to 3D Hand Pose Using Deep Neural Networks
Going forward, we make use of multi-view convolution neural networks (Multi-view CNN) [47] for 3D hand pose
estimation. Multi-view CNN was originally designed for 3D shape classification and retrieval. We re-purpose the
model to regress the parameters of 3D hand pose. Concretely, our model learns to stitch the multiple frames 𝐾
and predict a J -dimensional continuous output that defines the 3D hand pose. For real world data, we present
the hand pose using the 3D coordinates of all 21 hand joints and locate the wrist position as the original point,
thus J = 3 × 20 is needed for the rest 20 finger joints. For synthetic data, we use a equivalent parametric model
with J = 9 from [39]. The model includes a backbone network and a regression network. Each of the 𝐾 frames
is sent to the backbone network, where their features are extracted independently. These features are further
concatenated and fed into a regression network that predicts the hand pose parameters. An illustration of our
deep model is shown in Figure 3.

3https://www.blender.org/
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Network Architecture. Our backbone network follows the same design of the convolutional blocks in a 34-layer
residual network [17] (ResNet-34), which has been proven highly effective for visual recognition tasks and less
prone to over-fitting. A convolutional block in ResNet includes several convolution operations, each followed by
batch normalization [21] and rectified linear unit (ReLU). A global average pooling is performed at the end of
the backbone to extract a vector representation of each image. Features from each view is further concatenated
and sent to a regression network. Our regression network consists of two fully connected layers with ReLU
in-between and a dropout [45] (𝑝 = 0.5) before the last layer. The regression network thus maps the multi-view
features into a continuous output of hand parameters.
Model Training. Our model was trained with ground truth hand poses using Huber loss [20] (robust regression).
We used standard mini-batch stochastic gradient descent (SGD) with momentum (0.9), weight decay (1e-4), batch
size 256 and a learning rate of 0.001. Cosine learning rate annealing [32] was also used. The choice of these
hyper-parameters were chosen based on the common practice established in the vision community [18]. We did
not employ data augmentations during training, such as flipping or cropping, as they will not preserve the 3D
geometry of the hand. For all experiments, our model was trained for 90 epochs on the training set, with each
epoch is a pass over the full training set. The trained model was further evaluated on a hold-out non-overlapping
test set.

3.3 Towards Hardware Prototype Design: A Study of Hand Pose Estimation Using Synthetic Data
We now present a study of 3D hand pose estimation from multi-view hand silhouettes by using the deep model
and the synthetic data generation pipeline. Our goal is to identify a good design for our hardware prototype.
To this end, we vary the number of cameras and their positions, render the synthetic hand images, train deep
models and evaluate their results.
Camera Settings. We considered 8 equally spaced slots around the wrist (see Fig 4) and experimented to position
different number (𝐾 = [1, 2, ..., 8]) of virtual cameras4 into these slots. A brute force search will need to cover
2𝐾 = 256 combinations. We instead designed a greedy search strategy to identify the best camera mountings.
Specifically, we started with a single camera and enumerate all of the 8 options. For each position, we trained a
model using the rendered data and select the position with the lowest model prediction error on the test set. In
the next round, another camera was added to one of the rest slots, and again the model prediction error was used
to choose the best position. This process was repeated until all slots are filled.

Fig. 4. Best configuration of camera position given by our greedy search. From left to right, camera number varies from 1
to 8. Right hand is used for this visualization and we assume that the hand is pointing to the paper with the palm facing
downwards. Thus, a bottom camera is on the palm side while a top camera is on the back of the palm. Similarly, the left
camera is on the thumb side while a right camera is on the little finger side.

Synthetic Data Generation. For each camera setting, we rendered a large-scale dataset divided into a training
set of 600, 000 images and a non-overlapping test set of 10, 000 images. Both training and testing set were randomly
sampled and cover a wide range of hand poses and shapes. A small Gaussian noise was added to the position and
the orientation of each camera to simulate the slip of the sensors on the wrist.

4Each camera has a field of view (FoV) of 110◦, matching our thermal camera.
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Table 1. Reconstruction error of the best camera configurations as shown in Fig. 4.

Camera number 1 2 3 4 5 6 7 8
MAE (cm) 1.67 1.01 0.72 0.65 0.63 0.58 0.55 0.53

Fig. 5. An illustration of our hardware prototype and its mounting. Left: The prototype wristband sitting on a table and
compared to a coin. Middle: The mounting of the same prototype on the wrist and compared to the same coin. Right: A
different view of the mounting. We annotate the size of the camera and the coin by millimeter (mm).

Hand Pose Results. Given 𝐾 cameras, our deep model takes 𝐾 rendered hand images from each camera, and
seeks to regress the MANO pose parameters (J = 9) that are used to create the 3D hand. In this setting, we
evaluate our model using mean absolute error (MAE) over the 20 joints. The MAE is converted into a physical
metric space (cm) by re-scale all data points to the mean shape of hands. The result configurations from the greedy
search are shown in Figure 4, where the best camera mounting is displayed for each 𝐾 = 1, 2, ..., 8. Moreover,
Table 1 presents the MAE for all configurations in Figure 4. Out of the 8 options, using a bottom camera on
the palm side leads to the best MSE while using a top camera on the back of the palm has the worst MSE. We
speculate that the hand silhouettes from the bottom view captures a significant portion of the finger movement.
Surprisingly, even with a single camera facing the palm, the deep model achieves an MAE of 1.67 cm. The

reconstruction error indeed keeps decreasing as we add more cameras. For example, with 4 cameras the MAE is
0.65 cm. A sample result using 4 cameras is shown in Figure 2 (right). We also observed a diminished return of the
reconstruction performance when adding more cameras—adding another 4 cameras (8 in total) only reduces the
MAE to 0.53 cm. These results provide important guidelines for our hardware design. With our goal of accurate
reconstruction using a minimum set of cameras, we choose to use 4 cameras for implementing our hardware
prototype.

3.4 FingerTrak: System and Implementation
The pose estimation result from the synthetic data set was very encouraging. Therefore, we move forward to
design and implement our physical prototype FingerTrak. We now present the details.

3.4.1 Hardware Design. Our prototype consists of a wristband module, four thermal cameras placed at the
designed location, and a computing unit, as shown in Figure 5.
Design of the Wristband. The wristband is made of Velcro, such that the size of the band can be adjusted
to fit different sizes of wrists. Each Velcro has a length of 17cm and a width of 3cm. We taped four thermal
cameras on the wrist bands with equal distances in between. We chose thermal cameras because they allow the
system to reliability capture hand silhouettes even under complex backgrounds. We considered and experimented
different cameras in our preliminary study. A depth (RGBD) camera can potentially easily segment hands from
the background, but its size is relatively large at this moment, which does not meet our design requirements.
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Fig. 6. Overview of the system architecture. Four Raspberry Pi’s transfer synchronized thermal images to the laptop via a
Wi-Fi router. The laptop retrieves a stream of frames containing tracking data and predicts the hand pose.

Compared to thermal cameras used in our system, miniature RGB cameras can provide higher resolutions.
However, reliably hand segmentation under cluttered background poses extra challenge in computer vision. As
the research question in this paper is to explore whether we can reconstruct the complete hand pose from the
outline of the hand, we decided to use the thermal cameras in our final prototype. We will discuss more detailed
results with other camera choices in the discussion section.
Implementation Details. Four MLX90640 thermal cameras were used as the main sensors in our prototype.
Each camera comes with a thermal sensor (CCD and lens) and a image processing unit (integrated in a small
PCB), and is 9.30 mm in radius and 11.25 mm in height. We re-wired the connection between the thermal sensor
and its processing unit, such that only the sensor was mounted on the wristband, further reducing the size and
allowing for a mounting position that is closer to the wrist. These cameras can continuously record thermal
images of the hand with a temperature sensitivity around ±2◦ C (in the 0 − 100◦C range) at a frame rate of 16Hz
with a resolution of 32 × 24, and a field of view (FoV) of 110◦ × 75◦. Each camera was connected to a separate
Raspberry Pi 3B+ through I2C interface. In total, 4 Raspberry Pi’s were used to communicate the captured image
frames from the camera (16 FPS) to a ThinkPad X1 laptop with Intel Hexa-Core i7-8750H CPU through wireless
local area network. Figure 6 shows the full hardware setup of our system including the wrist band, Raspberry Pis
and a laptop.
Image frames from our prototype system were further synchronized using a time-matching algorithm. Con-

cretely, UTC time stamps from the Raspberry Pi were used to match the frames. Thermal images were collected
by Raspberry Pi together with their time stamps into a buffer. A threshold (0.1 second) was selected such that
four thermal images are considered as aligned if and only if the absolute maximum difference among their time
stamps is lower than the threshold. We removed all frames that are not aligned based on our time-matching
algorithm. Therefore, our prototype system might miss a few frames during the recording.
In addition to our hardware prototype, we mounted an external depth sensor—Leap Motion to capture hand

poses during our user study as a way to train and evaluate our system. Specifically, Leap Motion utilizes raw
depth images captured by its depth cameras to infer a reference hand pose at a frame rate of 60Hz. Its major
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hardware components include three active infrared LED’s and two depth cameras (Aptina MT9V024 with global
shutter) receiving the reflection of the infrared light. A depth image records the distance of each detected object
point from the camera’s viewpoint. Estimation of reference pose (3D coordinates of hand joints) is based on a
proprietary finger joint detection algorithm applied to depth images captured by the imaging sensors. Hand pose
data is then transferred to a laptop via USB and received by a program calling Leap Motion API. The program uses
Leap Motion V2 desktop developer SDK. It receives a stream of hand pose data, including hand joint positions
in Leap Motion coordinate system and timestamps in UTC. After data collection, recorded hand pose data is
synchronized with thermal images.
We further synchronized thermal images from our prototype system to the reference pose acquired by Leap

Motion using a similar time-matching algorithm as we synchronized the thermal images. As Leap Motion also
creates time stamps for its pose data and has a higher sampling rate than our prototype, we chose to match the
time stamps from Leap Motion to their nearest time stamps from Raspberry Pi. Similarly, a threshold was also
selected such that the thermal images are considered as matched to a reference pose if and only if the absolute
maximum difference their time stamps is lower than the threshold. After this synchronization, a set of thermal
image frames with reference pose data were saved. We considered these reference pose as the ground-truth pose
for the corresponding thermal images.
To train our deep model for hand pose estimation, the thermal images and their ground-truth data were

transmitted to a GPU cloud instance (p2.8xlarge instance with 8 K80 GPUs) at Amazon Web Service (AWS). Once
trained, the model can be deployed to a workstation to conduct pose estimation using our prototype.

3.4.2 3D Hand Pose Estimation Using FingerTrak. We further integrate the deep model with our hardware for
estimating 3D hand pose based on multi-view thermal images. Our system continuously captures hand images
from the wrist. At each time step, our model takes the input of 𝐾 = 4 thermal images (time synchronized) of the
size 32 × 24, and outputs the 3D coordinates of 20 joints (output dimension J = 60).
Hand Representation. We directly used the thermal images as the input. While it is possible to segment the
hand regions based on body temperature, we found our model works reasonably well even without segmentation.
For the output, we regress 60 values that define the 3D coordinates of 20 joints, shown as the blue dots in Fig 3
(right). We exclude the root joint of wrist. This is because our cameras always move along with the wrist and
thus the wrist joint is considered as the origin of our coordinate system. This hand model was also used in [39].
We note that choice of predicting 3D coordinates of all joints (an over-parameterized representation of the hand)
is deliberate, as these 3D coordinates naturally encodes the length of phalanx bones.
Training with FingerTrak Data. Our model was trained using synchronized ground-truth pose data gathered
from Leap Motion, as we described previously. Specifically, our model takes 4 thermal images captured from
our prototype and learns to predict hand poses (20-joint hand representation) measured by Leap Motion. We
experimented with training both user dependent and user independent models as we will describe in our user
study and discussions. All models were trained from a random initialization (scratch). We followed the same
training scheme as presented in Section 3.2 yet with a different mini-batch sampling strategy. We found it helpful
to avoid sampling adjacent frames in the same mini-batch during training, as these frames tend to be nearly
identical and thus slow down the learning. Once trained, our model can be applied on every frame of an input
video, leading to continuous estimation of 3D hand pose.

4 USER STUDY
To better understand the performance of FingerTrak with users, we conducted a user study with 11 participants
(6 males and 5 females) to evaluate our system. All participants were recruited from the local institution, and the
study was approved by Institutional Review Board (IRB).
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Fig. 7. Examples of the continuous hand poses used in the first section of our user study.

background2 background1

iPhone

apple

book

marker

Fig. 8. Two different backgrounds (left) and four items used for holding during our user study (right).

4.1 Study Procedure
At the beginning of the study, a researcher introduced the protocol of the study to the participants and answered
any question they may have about the study. Then one researcher helped the participant to wear the wristband.
Participants were asked to choose which hand (left vs. right) they want to wear the wristband. All chose right
hand. Furthermore, the participants were encouraged to practice moving their hands/fingers with the wristband
to ensure comfortableness, before the study starts.

During the study, each participant was sitting on a chair. The Leap Motion was placed on the table. To acquire
reliable ground truth hand postures, we expect that the participants’ hand stay in the field of view of Leap Motion.
In order to help the participants hold the hand within the zone, we put a comfy box on the table, where the
participants can put their elbow on. It helped to keep the arm above the table while reducing the fatigue. During
the study, the participants can move their arms and hands, as long as the hand is in the range where the Leap
Motion can capture the hand postures.
The study for each participant consists of two sections, which are designed to evaluate the performance of

hand pose estimation under two different settings: when the hand is empty or when the hand is holding objects.
The entire study for each participant lasts for around 1 hour. We now present details of each section.
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4.1.1 Continuous Hand Pose Estimation When the Hand Is Empty. In the first section,the participant performed
different hand postures following the pre-recorded instructional video which was played using a monitor on
the table. In this instructional video, the researchers demonstrated performing the 19 hand poses (as shown in
Figure 7) slowly in a random sequence. Before and after performing each pose, the hand always returned to the
original pose ,which is the left-most pose on the first row in Figure 7. The guideline for choosing the postures used
in the instructional video is that we want to choose the postures as complicated as possible. However, we found
that Leap Motion cannot provide reliable ground-truth for complicated postures. After balancing these factors,
we chose the final 19 postures which can be recognized by Leap Motion as shown in Figure 7. We randomized
the sequence of 19 postures and generated 3 instructional videos.

This section had 10 sessions in total. In each session, the participants performed the gestures following one of
the three videos. The first 7 sessions were used as the training sessions. The rest of the sessions were used as the
testing sessions. To evaluate how would our system work under different background, we asked the participants
to rotate the arm orientation to a different direction on the table with a different background in the second to
the last session (see Figure 8 for the background). In the last session (10th), the device was first removed from
the wrist of participant and re-mounted again. In each training session we adjust the wristband to a slightly
different position and orientation, so that the data sampled can bear more variance and make the trained neural
network more generalizable. The wristband is put back on with our assistance to make the position shift as small
as possible. In the future, calibration gestures may be involved after re-mounting, which will be further discussed
in Section 5.5. The background was kept the same as the first 7 sessions.

4.1.2 Hand Pose Estimation When the Hand Is Holding Objects. The goal of the second section of the study is
to evaluate how the system performs on estimating hand poses when the hand is holding objects. Prior work
using wrist-mounted cameras [25, 53] for hand pose estimation all required the complete view of the fingers.
Thus, they cannot estimate the hand pose when the hand is holding objects, as the object will block the fingers
from the wrist-mounted camera. Based on our knowledge, our work provides the first attempt to estimate the
complete hand pose using a wrist-mounted camera when the hand is occupied with objects.
We chose four common objects (a smartphone, a book, an apple and a sharpie as shown in Figure 8) for the

participants to grab and hold in this task. This section has 40 sessions. In each session, the participants grabbed
and held each of the four objects for about 4 seconds (50 frames) in a random order. The first 32 sessions were
used as training sessions and the last 8 sessions for testing session. Leap Motion cannot provide reliable hand
posture estimation as ground truth when the hand is holding objects. Therefore, after the participant grabbed
and held the object, we removed the object from their hands, and asked the participants to keep the same posture
as stable as possible, such that Leap Motion can provide ground-truth of the hand poses.
In this section, we only estimated the static hand pose when the hand was holding the object due to the

limitation of ground truth acquisition. The training data are the images captured from the four wrist cameras
when the user is holding objects in a static pose. And the ground truth hand pose is provided by Leap Motion,
when the object is removed from the hand while keeping the same static pose.

4.2 Results of Continuous Hand Pose Reconstruction
The data gathered from our user study were used to train and evaluate our model. For each participant, we obtained
an average of 10K samples for training and 2K samples for testing, leading to a total of (10𝐾 + 2𝐾) ∗ 11 = 132𝐾
samples. Each sample contains 4 thermal images captured at the same time. These 132K samples were sampled
key frames from the videos during the sessions of the user study and is equivalent to 750 seconds of videos with a
16Hz frame rate. For our experiments, we trained a separate model per user, i.e., our models are user-dependent.5

5See the experiment of user independent models in Section 5.7.
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Fig. 9. Results of our user study. We report per joint MAE for joint positions (left column in cm) and angles (right column in
degree). From top to bottom: testing under the same background (first row); testing under a different background (second
row); testing after re-mounting the sensors (third row); and testing with an object in hand (last row).

These models were evaluated for continuous hand pose estimation. And the results were reported using both
position and angular errors. We now describe our evaluation protocol and present our results.
Evaluation Protocol. We consider two different settings in our user study: (1) when the hand is empty and (2)
when the hand is holding objects. For both settings, we compare our model outputs to reference hand poses
obtained from Leap Motion. The mean absolute error (MAE) for joint positions and joint angles are calculated as
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Ground truth

Prediction

Top view

Right view

Bottom view

Left view

*BG 1 *BG 2 BG 1 BG 2 BG 1 BG 2 BG 1 BG 2 BG 1 BG 2

BG1: frames from Same Background task
BG2: frames from Different Background task

Fig. 10. Visualization of the results with different backgrounds (BG1 vs. BG2). Each column presents two sample inputs with
a similar hand pose and compares the results from thw two backgrounds (BG1 left and BG2 right). From top to bottom in
each column: From top to bottom: ground truth hand pose; predicted hand pose; and the thermal images captured by the
wearable cameras.

our main evaluation metric. Specifically, for each of the 20 joints (see Figure 3 right), the absolute error between
the predict 3D coordinates and the reference 3D coordinates are computed. To further capture the 3D structure of
the hand, we also compute the error between the predicted 3D joint angle and the reference joint angle on 15
joints (excluding the fingertips). The errors are further averaged across all joints and all frames, leading to MAE
for joint positions (cm) and joint angles (degree).

4.2.1 Hand Pose Estimation When the Hand Is Empty. For the setting of empty hands, we use the data from the
first 7 sessions for training. These sessions were captured under the same background. Our trained model was
evaluated on a separate set of 3 sessions. Each of them is designed to evaluate a different condition. We present
and discuss the results for each setting.
Same Background. As the first step, we evaluated our model on test images that were captured under the same
background. Our results are presented in Figure 9 (first row). Overall, our system achieves an MAE of 1.20 cm
for joint positions and a MAE of 6.46◦ for joint angles across all 11 participants. For reference, one of the latest
computer vision methods (user-independent model) [13] for hand pose estimation using a depth image has a
mean error around 1 cm for joint positions. And a recent wearable stretch-sensing glove can achieve a mean
error about 6◦ for joint angles using a user-dependent model [15]. Moreover, our system can consistently predict
accurate hand pose across participants (std MAE is ±0.31cm and ±2.12◦ for positions and angles).
To better understand our results, we plot the cumulative distribution function (CDF) of errors in Figure 12

(session 1). The curves demonstrate the percentage of samples where its worst joint prediction error (out of 20
joints) is smaller than a threshold. More than 50% of the samples have a worst error smaller than 2.5 cm—a small
to moderate error for hand pose estimation. And all predicted joint positions in over 81% of the frames have no
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Ground truth

Prediction

Top view

Right view

Bottom view

Left view

*BRe *ARe BRe ARe BRe ARe BRe ARe BRe ARe

BRe: frames before re-mounting
ARe: frames after re-mounting

Fig. 11. Visualization of the results before the re-mounting (BRe) and after the re-mounting (ARe). Each column presents
two sample inputs with a similar hand pose and compares the results before (left) and after the re-mounting. From top to
bottom in each column: From top to bottom: ground truth hand pose; predicted hand pose; and the thermal images captured
by the wearable cameras.

worse than 4 cm error. Finally, we provide visualization of our sample results in Figure 1, including the reference
pose, predicted pose, and the input thermal images.
Different Background. Going forward, we further tested the same model on test images captured under a
different background. Figure 9 (second row) presents our results. In this more challenging setting, our system has
MAEs of 2.09cm (std ±0.58cm) and of 8.06◦ (std ±2.83◦) for joint positions and angles, respectively. Switching to
a different background increases the error by 0.89 cm and 1.6◦ in position and angle. Similarly, we plot the CDF
of errors in in Figure 12 (session 2). In this more challenging setting, more than 50% of the samples have a worst
error smaller than 5 cm.
We empirically observed that the captured thermal images are robust to different backgrounds. And we

conjecture that the increased error was due to the shift of the cameras during large arm motion. This is further
demonstrated by the visualization of sample results in Figure 10. With similar hand poses, there seems to be a
minor shift in the thermal images, especially in the bottom view. Nonetheless, our results demonstrate that our
system is able to generalize to different background.
Re-mounting. Finally, we consider a more practical setting, where the device was taken off and re-mounted
on the same participant. Re-mounting the device can cause potential shifts of the cameras. Therefore, this
cross-session setting is very challenging for our user-dependent model. We tested the same model and summarize
the results in Fig 9 (third row). Even in this setting, our system still maintains reasonable MAEs of 2.72cm (std
±0.38cm) and 9.44◦ (std ±3.32◦) for joint positions and angles. Similarly, we plot the CDF of errors in Figure 12
(session 3) and provide visualization of sample results in Figure 11. These additional results indeed support our
argument on camera shifts. Figure 11 shows minor to moderate difference of the input thermal images of similar
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Fig. 12. The cumulative distribution function of the worst errors across all four settings. Session 1: same background; Session
2: different background; Session 3: re-mounting; and Grabbing: objects in hand. The X axis denotes the error threshold (𝐷) in
cm. And the Y axis show the percentage of frames where their worse joint prediction error is smaller than the threshold (𝐷).

poses before and after the re-mounting. These differences, as we argued, lead to decreased MAE, where more
than 50% of the samples have a worst error smaller than 6.5 cm. These results indicate that our system can adapt
to minor variations in the mounting of the wristband, and thus have great potential for real world use cases.

Fig. 13. MAE for joint angles for each participant. The average angular MAE across all three setting is 8.99±2.7 degrees.

Remark. We further discuss our results by contrasting three different settings. Testing our model under the same
background gives the lowest errors that are comparable to other sensing modalities. Changing the background or
re-mounting the sensor leads to a moderate increase in the pose estimation errors. We examined the source of the
increased errors and attribute them to the shifts of cameras, which pose an additional challenge of inconsistent
viewpoint for our user-dependent models. Figure 13 shows a breakdown of the angular MAE across all participants
averaged across three settings. Among all settings, the thumb has the lowest error while the index finger has the
highest. Overall, our system demonstrated promising accuracy for 3D hand pose estimation across participants,
under different backgrounds and with the re-mounting of the device.
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Fig. 14. Relative reconstruction error in the first testing session with different configurations of camera positions, including
C0 (top camera), C1(bottom camera), C2 (right /little finger side camera), C3 (left/thumb side camera).

4.2.2 Hand Pose Estimation When the Hand Is Holding Objects. Moving beyond an empty hand, we conducted
further evaluation when the hand is holding objects. In this setting, we used the data from the first 32 sessions
for training and rest 8 sessions for testing. The background was kept the same for all sessions. The results are
presented in Figure 9 (last row). Our system has MAEs of 2.68cm (std ±0.92cm) and 10.37◦ (std ±3.31◦) for joint
positions and angles, respectively. Compared to our previous results, the MAE for joint positions and angles
increased by a moderate to large margin. We argue that this setting of holding objects in hand is extremely
challenging, and thus the results are very encouraging. In fact, to the authors’ best knowledge, we are the first to
consider estimating hand pose with objects in hand using a wrist-worn wearable system. We have to point out
that our study on estimating hand pose with objects in hand is preliminary. For example, only 4 objects were
considered in the indoor environment. While our current work only explores the feasibility of reconstructing
hand pose with objects in hand, we hope that our study can provide a solid step towards hand pose estimation in
the wild. And we plan to further explore this setting in the future.

5 DISCUSSION

5.1 Camera Settings
In the preliminary study with synthetic images, we explored different camera settings. In order to understand how
many cameras were needed in the actual device, we conducted another data analysis. In this analysis, we used
the data collected in the user study with 11 participants. We used the continuous hand pose data from the first 6
sessions as the training data, and the 7th session as the testing session. We changed the quantity and positions of
the cameras we used in the evaluation. We labeled the four cameras used in the study as C0 (top), C1(bottom), C2
(right /little finger side), C3 (left/thumb side). We trained multiple models with different combinations of camera
settings, as shown in Figure 14. We calculated the relative reconstruction error in each set of camera setting. We
used the evaluation results from all 4 cameras as 100% and compared other reconstruction errors to the original
setting. The better result we received, the higher percentage was drawn in the figure. As Figure 14 shows, using
only one camera presented the lowest performance. However, C1 is the most informative camera and C3 is the
least informative camera among the four cameras. Also, the combination of three cameras (C1, C2, C3) presents a
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Fig. 15. Wristband with 4 miniature RGB Cameras used in our pilot study.

similar performance as four cameras. This indicated that in the future, it is possible to remove the top camera
from the system but still achieve similar performance.

Fig. 16. Discrete micro-finger poses (12) used in our pilot study (pose recognition task).

5.2 Improvement on Camera Resolution
The thermal cameras used in FingerTrak have several limitations. First, our current model may not work well if
the background including objects that present a similar or higher temperature (e.g., sun, heater) as the human
body. Second, the resolution of thermal cameras (32×24) is low. Thus, it may not be able to capture subtle changes
on the hand shape, which limits the richness of the hand poses that can be estimated. As we have discussed earlier
in the paper, there are miniature RGB cameras that satisfy our design needs and provide a higher resolution.
Therefore, we built another prototype with 4 miniature RGB cameras (with same position setting) as shown in
Figure 15. This new prototype was used to further verify our hypothesis that that the low resolution thermal
images may fail to capture subtle differences on the hand shape needed to estimate or distinguish certain micro
finger poses. With higher resolution images, it is now possible to capture these subtle changes.

We conducted a pilot study with 10 participants to verify this hypothesis. In this study, the participants were
asked to perform a set of hand poses that consists of the thumb touching 12 phalanges, as Figure 16 shown. This
set of micro finger poses is arguably considered as the most challenging micro-finger poses to be distinguished as
they are highly similar to each other. To evaluate the performance of the wristband with RGB cameras, we asked
the 10 participants to wear the wristbands, and performed the 12 finger poses for 18 times in a white background
(no segmentation is needed). For each participant, we used the data collected from the first 12 instances as the
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training data, and the last 6 instances as the testing data. The model was a deep neural network similar to what
we presented in this paper. The only difference was that we changed the input resolution as well as the output of
the model (classification). In our pilot study within the research team, we were not able to distinguish these 12
static poses using the thermal images captured from the wristband. The accuracy was under 40%. However, with
the data collected from 10 participants using the RGB cameras, we were able to achieve an impressive average
accuracy of 92.62%. These preliminary results verified our hypothesis that higher resolution of the images can
lead to even more accurate estimation of the hand poses.

What we presented in this paper is a starting point towards the goal of building a practical wrist-mounted device
to reliability estimate the complete hand pose. Our study and results showed that it is possible to reconstruct
the entire finger pose by observing the hand shape from the wrist. There are multiple ways to further improve
the results and apply FingerTrak in real-world scenarios. For example, using a high resolution RGB or depth
(RGBD) camera is a natural next step. We have presented preliminary results of using RGB camera in this
paper. We plan to experiment with miniature depth cameras. Another possibility is to wait for the technology
advancement of thermal cameras, such that we can find miniature thermal cameras with image high resolution.
Other improvements include applying deep learning to segment the hand from background, exploring different
deep learning architectures and using large-scale synthetically generated data for training.

5.3 Improving Ground Truth Acquisition Method
As we have discussed multiple times in the paper, another major issue that limits the richness and performance
of FingerTrak on estimating the hand pose is the stability and accuracy of the ground-truth hand pose, currently
provided by Leap Motion. We found Leap Motion cannot recognize complicated hand poses, and sometimes
provide unstable ground truth of hand poses, which may influence the training of our model as well as the
evaluation of our results

In our preliminary experiment using synthetic images, we were able to accurately estimate very complex hand
poses using the 3D hand mesh models, as the parameters allowed us to generate complicated hand postures.
Therefore, we believe it is feasible to use FingerTrak to continuously estimate more complicated poses given a
device that can provide high quality ground-truth. We considered using a glove to acquire ground-truth. However,
we are concerned that the motion-capture glove may change the shape and color of the hand, which may not
represent bare-hand performance. We plan to further investigate this issue in the future.

5.4 Influence of Arm Posture and Form Factor Design
In our current user study, the hand poses of a user was collected when the user’s arm is on the table. However,
in real world applications, the user may want to capture the hand poses under different scenarios with various
arm posture. For instance, a user may want to interact with devices while the arm is pointing down the earth. In
theory, the arm posture should not influence much of our system, as the positions of the cameras are fixed on the
wrist. However, given the current hardware design, when the user moves the arm pointing down to the ground,
the weight of the wristband may shift the positions of the cameras a little bit. This shift of camera positions might
influence the performance of FingerTrak. One possible solution is to design a more comfortable and form-fitting
form factor with lighter weighted cameras, such that the position of the wristband is not easily changed. The
other solution is to consider the position change of the wristband when training the model. We will further
explore this issue in the next step.

5.5 Re-mounting Error Analysis
One of the possible reasons for the remounting error is the shift of the camera positions after remounting. This
is demonstrated in Figure 11, where the captured hand contour of a similar pose had similar shapes yet with a
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shift before and after re-mounting. We suspect this is one key factor that causes the decrease of the performance
after remounting the hardware. There are a couple of potential solutions to alleviate this issue, including (1)
introducing a calibration gesture which helps the system to calculate the shift between different sessions; (2)
conducting data augmentation in the training set. For instance, we can normalize and rotate the images to reduce
the difference caused by small changes on camera positions; and (3) We can also generate more synthetic training
data which includes the images at different angles for the same pose. This will improve the diversity of the data
set, which hopefully can help adjust the model to different camera positions. We plan to further explore this in
the future.

5.6 Transfer Learning Using Synthetic Images
One challenge of using the current system is that the user has to provide training data first. One solution to this
issue, is to take advantage of millions of synthetic hand images that can be produced from our data generation
pipeline (as shown in Figure 2) to train a model. Such a model can be trained without using real world data, and
deployed to estimate the hand pose in real images with the latest advancement of transfer learning. A major
obstacle for training using synthetic data in our current setting is the lack of good simulation of thermal imaging
data. While we have used synthetic image data to verify our key idea, the rendered images contains only hand
masks and thus are not designed for transfer learning to thermal images. Other challenges of transfer learning
include the accurate alignment of camera positions and the user-specific modeling of hands. We believe learning
from synthetic data for wearable based hand pose estimation is a promising direction, and plan to explore this
direction in the future.

5.7 User-independent Models
We conducted additional experiments using the data from our user study to build user-independent models.
Specifically, we performed leave-one-participant-out experiment. Namely, out of the 11 participants, data from 10
participants were used to train the model and the trained model was tested on the other participant’s data. This
process was repeated 11 times for all participants. Similarly, we report the average MAE of joint positions and
joint angles across 4 settings. The results are summarized in Figure 17 (shown as 0% of using a user’s training data).
Our user-independent models have much worse performance in comparison to their user-dependent versions.
For example, our user-independent model achieves a MAE of 8.7 cm in joint positions and a MAE of 14.7◦ in joint
angles, while the user-dependent model has 1.2 cm and 6.46◦.
Moreover, we experimented with adding user data during training, leading to leave-partial-participant-out

experiment i.e., user-adaptive model. In this setting, we used the data from 10 participants plus a portion of the
training data from the other participant for training, and evaluated the trained model on the testing data from
the other participant. The results are reported as joint position and angle MAEs in Figure 17. Note that using 0%
of user data is equal to leave-one-participant-out. We observe that adding the participant’ data can reduce both
MAEs by a large margin. However, to achieve a similar performance level of user-dependent models, 80% of the
user data has to be added. Moreover, even using all participants’ training data, i.e., 100% in Figure 17, the joint
position and angle MAEs are 1.29 cm and 7.01◦ slightly worse than the user-dependent model (1.20 cm and 6.46◦).

Finally, we want to point out that we did not expect or claim our current system to be user-independent given
a relatively small sample size of data. As the shape and size of hands vary dramatically among different people,
the purpose of this paper is to demonstrate a feasibility. How to make the model generalizable among users will
be a critical topic for the next step. One possible solution if provided enough resources is to build a model with
large enough dataset, that may naturally lead to a model which performs well on different users.
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Fig. 17. MAE for joint position (left) and joint angles (right) in leave-one-participant-out experiment. The percent represents
the proportion of training data of the other participant used in training the model. 0% means the model is pure leave-one-
participant-out model. With the increase of percent, the model is trained with all 10 participants’ training data and part of
the other one’s training data.

5.8 Power Consumption Analysis
The system consists of three parts, cameras to collect images, Raspberry Pi’s and a Wi-Fi router to transmit
data, and a computing unit to run the model and make predictions. The power consumption of the wearable
section of the whole system can be broken down into two parts: on-band cameras and off-band Raspberry Pi’s.
While the camera can be connected to a micro controller unit (MCU) supplied with VDD=2.6𝑉 ∼ 5𝑉 , the thermal
sensor itself is separately supplied from VDD=3.3𝑉 or left with no supply (VDD=0𝑉 ) with the I2C connection
running at the supply voltage of the MCU. The current consumption of one camera is under 23𝑚𝐴. Thus, the
total on-band power is less than 0.44𝑊 . Compared to Apple Watch Series 5, which has 296𝑚𝐴ℎ battery capacity,
the on-band part is on a moderate power consumption level. Requiring 5.1𝑉 supply, Raspberry Pi 3B+ idles at
435𝑚𝐴 with Wi-Fi connected, and 610𝑚𝐴 when the CPU is stressed. Without the need to run GUI or GPU and
the CPU load is less than 20%, we expect its power consumption to be less than 3.1𝑊 . We can further reduce the
power consumption by connecting multiple cameras to one Raspberry Pi.

5.9 Applications
Given the encouraging performance on pose recognition of in-session and cross-session, the immediate ap-
plications of FingerTrak is to recognize a rich set of hand poses to improve wearable interaction experience.
Importantly, the ability of estimating hand poses while holding an object in hand, can potentially enables
fine-grained daily activity recognition, such as, the length of reading a book, eating behavior, hand washing
behaviors [28], detecting eating moments, and detecting the use of hand-held devices when driving. However, a
more thorough study is needed to draw any conclusion. Another interest application of FingerTrak in the future
is to replace the glove or controller in Virtual Reality setting, to free the hands in VR interaction. Moreover,
FingerTrak can be used to control a robotic hand remotely and thus provide a novel means of human robot
interaction where precise human hand manipulation is needed. Last, given enough data and improvement, it is
also possible to build a wearable sign language translator using reconstructed finger poses with FingerTrak.

5.10 Limitations and Future Work
The goal of FingerTrak is to demonstrate the feasibility of estimating the complete hand pose from the hand shape
captured by cameras on the wrist. The current implementation is not perfect yet, as all prototype does. We have
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discussed several other parts that can be improved and explored in the future. For instance, our user-independent
model has a much higher error than the user-dependent model which requires the user to provide training data
before using the system. Given future large scale datasets, we anticipate that we can potentially improve the
performance of user-independent models or develop a user adaptive model with simple calibration. Another
example is the study of hand pose estimation with objects in hands. More objects and backgrounds should be
considered. And we leave this as part of our future work.

6 CONCLUSION
In this paper, we present FingerTrak, a minimal-obtrusive form-fitting wristband embedded with four miniature
thermal cameras, that can continuously track the 3D position of fingers. Our system makes use of a deep model
that learns to “stitch” thermal images and to estimate the positions of 20 finger joints in 3D. We demonstrated
the feasibility of reconstructing the entire hand pose by only observing a few hand silhouettes from the wrist.
Our user study with 11 participants shows that our system can achieve an average angular error of 6.46◦ when
tested under the same background, and 8.06◦ under a different background. Our results also suggest that our
system is able to recover 3D hand pose when the device was re-mounted or when the hand is hold objects. We
believe that our study, hardware prototype and results provide a solid step towards hand pose estimation using
wearable sensing.
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