
HandyTrak: Recognizing the Holding Hand on a Commodity 
Smartphone from Body Silhouete Images 

Hyunchul Lim, David Lin, Jessica Tweneboah, Cheng Zhang 
SciFi Lab, Cornell University 

Information Science, Cornell University 
Ithaca, New York, United States 

{hl2365,dxl2,jnt42,chengzhang}@cornell.edu 

ABSTRACT 
Understanding which hand a user holds a smartphone with can help 
improve the mobile interaction experience. For instance, the layout 
of the user interface (UI) can be adapted to the holding hand. In this 
paper, we present HandyTrak, an AI-powered software system that 
recognizes the holding hand on a commodity smartphone using 
body silhouette images captured by the front-facing camera. The 
silhouette images are processed and sent to a customized user-
dependent deep learning model (CNN) to infer how the user holds 
the smartphone (left, right, or both hands). We evaluated our system 
on each participant’s smartphone at fve possible front camera 
positions in a user study with ten participants under two hand 
positions (in the middle and skewed) and three common usage 
cases (standing, sitting, and resting against a desk). The results 
showed that HandyTrak was able to continuously recognize the 
holding hand with an average accuracy of 89.03% (SD: 8.98%) at a 2 
Hz sampling rate. We also discuss the challenges and opportunities 
to deploy HandyTrak on diferent commodity smartphones and 
potential applications in real-world scenarios. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile de-
vices. 

KEYWORDS 
Mobile computing, Computer vision, Commodity smartphone 

ACM Reference Format: 
Hyunchul Lim, David Lin, Jessica Tweneboah, Cheng Zhang. 2021. Handy-
Trak: Recognizing the Holding Hand on a Commodity Smartphone from 
Body Silhouette Images. In The 34th Annual ACM Symposium on User Inter-
face Software and Technology (UIST ’21), October 10–14, 2021, Virtual Event, 
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3472749. 
3474817 

1 INTRODUCTION 
Understanding which hand people hold their smartphones with is 
increasingly gaining importance in mobile interface design since a 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifc permission and/or a 
fee. Request permissions from permissions@acm.org. 
UIST ’21, October 10–14, 2021, Virtual Event, USA 
© 2021 Association for Computing Machinery. 
ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00 
https://doi.org/10.1145/3472749.3474817 

Figure 1: The research idea of HandyTrak. The position of 
the body (e.g., head and shoulder lines) in segmented image 
frames is difers depending on whether the phone is held in 
a user’s (a) left hand, (b) right hand, (c) both hands, (d) tilted 
to the left, or (e) tilted to the right. 

user’s hand mode has a direct impact on their mobile user experi-
ence [26, 41]. This is because the “comfortable” phone screen areas 
for users’ fngers difer depending on their hand mode [2, 12, 24] 
as shown in Figure 2.a. For instance, when holding smartphones, 
the thumbs cannot be easily stretched to reach certain parts of a 
mobile screen (e.g., middle to top). In such cases, users are forced 
to make an efort to touch the “further” areas (e.g., changing hand 
grip or tilting the device), which leads to a sub-optimal user experi-
ence. Furthermore, the gain in popularity of larger screen sizes in 
commercial mobile devices creates an even bigger user experience 
issue as it makes it even more difcult to touch certain parts of the 
screen with the thumb. 

To address this issue, commercial companies have developed 
techniques such as Apple’s Reachability feature [16], one-handed 
mode [18], and one-handed typing [15] as shown in Figure 2.b. 
These techniques shrink the UI and then shift it to the “comfortable” 
range of the left or right thumb, making it easier for users to ac-
cess the “further” parts of the screen. However, explicit user input 
is required as activation to determine the holding hand, and the 
shrunk UI would need to be manually readjusted as users switch 
their hands when operating. 

Researchers have identifed more ideal solutions that automat-
ically detect how a smartphone is being held and then tailor the 

1210

https://doi.org/10.1145/3472749.3474817
https://doi.org/10.1145/3472749.3474817
https://doi.org/10.1145/3472749.3474817
mailto:permissions@acm.org
mailto:hl2365,dxl2,jnt42,chengzhang}@cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472749.3474817&domain=pdf&date_stamp=2021-10-12


UIST ’21, October 10–14, 2021, Virtual Event, USA Lim et al. 

Figure 2: Hand Mode and Adaptive User Interface. Comfort-
able screen areas for the left hand (a.1), right hand (a.2), and 
both hands (a.3). Fig. 2b shows an adaptive user interface 
that is tailored to the user’s hand mode (left-handed (b.1), 
right-handed (b.2), both hands (b.3)) 

UI accordingly. Previous research utilized interaction data such 
as touch events, swipes, and/or Inertial Measurement Unit (IMU) 
sensor values, to automatically detect hand mode [8, 9, 39]. How-
ever, these techniques require explicit input from the user (e.g., 
touching the phone, motion) before they are able to recognize the 
holding hand, which makes them not suitable in cases where adap-
tive UI is needed before any touch interaction. For example, with 
these techniques, one-handed mode (See Figure 2.b.1) cannot be 
activated immediately after turning on or unlocking the phone. 
Other research [1, 29] introduced techniques to determine hand 
mode before interacting with a phone by using the user’s unlocking 
behavior (e.g., pin, swipe, pattern unlock, and IMU sensor stream). 
Still, these techniques can detect hand mode only during the phone 
unlock stage and cannot handle continuous hand switching sce-
narios during actual phone use. Also, they might be less useful 
in that unlock methods are gradually shifting to biometric unlock 
mechanisms such as facial recognition. 

For continuous hand mode tracking, several researchers have 
proposed hand mode detection methods that work before the user 
interacts with the screen. These methods can provide a continuously 
adaptive UI depending on the holding hand, which helps to enrich 
the mobile interaction experience [25, 35]. However, all of these 
methods either require external sensors (e.g., additional capacitive 
sensors along the sides of the phone case [21], a self-capacitance 
touchscreen [11], or an additional device (e.g., a smartwatch [11]), 
which means that they are not immediately available for commodity 
smartphones. Thus, we believe that there is a need for a new passive 
sensing approach that can continuously track the holding hand 
mode on commodity smartphones without explicit input from the 
user. 

In this paper, we introduce HandyTrak, an AI-powered software 
system that can continuously track the holding hand on a com-
modity smartphone using body silhouette images captured by the 
built-in front camera. The key idea of our system is that the po-
sition of the body (e.g., head and shoulder lines) in image frames 
is relatively diferent depending on whether the phone is held in 
a user’s left, right, or both hands (See Figure 1). We believe these 
diferences are highly informative in training a deep learning model 
to classify which hand is holding the phone. To implement this idea, 
we developed a customized user-dependent deep learning classi-
fcation model (CNN) to infer the holding hand from the images 
captured by the front camera, and we evaluated the system in a user 
study with ten participants. The results showed that our system 

was able to continuously recognize three hand modes (left, right, 
both hands) at 2Hz, with an average of 89.03% (SD: 8.98%) accuracy 
under three scenarios (standing, sitting, and resting against a desk). 
Specifcally, the system achieved an average of 95.84% (SD: 5.0%) 
accuracy when participants held and operated their phones in a 
left- or right-skewed position. 

Though HandyTrak can continuously track the holding hand 
with a promising accuracy, this feature may not always be necessary 
for real-world applications due to the strain on the phone battery. 
As a result, the main goal of HandyTrak is to allow designers and 
developers of mobile user interfaces to acquire the holding hand 
information at any time without explicitly requiring input from the 
user. For example, HandyTrak can be integrated into the face ID 
[17] unlock feature of phones, which uses the front camera to take 
pictures of the user. In this case, HandyTrak can provide holding 
hand information using the images captured from the unlocking 
event, without collecting any other additional information. Addi-
tionally, HandyTrak can activate one-handed typing mode based 
on the user’s hand mode after opening the keyboard. Moreover, it 
can be leveraged on the camera app to provide an adaptive virtual 
button that continuously adapts to the fngers of the holding hand 
when taking selfes, which would be especially helpful when taking 
selfes at odd angles. To verify how HandyTrak performs under 
these opportunistic sensing moments, we used images captured at 
the moments when the 10 participants were using three applica-
tions: 1) unlocking the device, 2) browsing an app, and 3) taking a 
selfe. The results showed that HandyTrak was able to recognize the 
holding hand with average accuracies of 87.56% (SD: 10.31%), 88.37% 
(SD: 6.28%), and 92.68% (SD: 6.47%) for the above three application 
scenarios respectively. Furthermore, we implemented the system 
in real-time on a commodity mobile phone and discuss possible 
opportunities and challenges when using our system in real-world 
scenarios such as walking scenario evaluation, user-independent 
model, and privacy issues. 

The contributions of our paper are the following: 

• We present a new method that leverages body silhouette 
images captured by the front camera of a commodity smart-
phone to continuously track hand mode. 

• We evaluate our system under various categories: the fve 
diferent positions of the front camera, two hand postures 
(in the middle and the skewed postures), and three scenarios 
of using the device (standing, sitting, and resting toward a 
desk). 

• We implemented our system on a mobile phone and discuss 
possible issues and solutions of deploying our system in a 
real-world application. 

2 RELATED WORK 
This section reviews the literature related to the detection of hand 
mode and hand grips by leveraging various sensors in a smart-
phone and/or additional hardware. Table 1 summarizes hand mode 
tracking techniques. 

With the commodity smartphone, researchers have explored 
solutions that automatically detect how a smartphone is being held. 
Researchers proposed methods that involved the use of sensors on 
the commodity smartphone. Goel et al [9] developed Gripsense, 

1211



HandyTrak: Recognizing the Holding Hand on a Commodity Smartphone from Body Silhouete Images UIST ’21, October 10–14, 2021, Virtual Event, USA 

Table 1: Summary of hand mode tracking techniques. HandyTrak is the frst technology that can continuously track the 
holding hand without requiring any prior user interaction on a commodity smartphone. *LH: Left-handed, RH: Right-handed, 
BH: Both hands, L-Th: sLeft thumb, R-Th: Right thumb, L-In: Left index fnger, R-In: Right index fnger 

Related Sensing Additional Hand Classifcation Sensing Explicit User 
Work Method Hardware Mode Accuracy Moment Input Dependence 

Gripsense [9] IMU & Touch - *LH, RH, BH 84.3% After touch Needed Independent 
ContextType [8] IMU & Touch - LH, RH, BH 89.7% After touch Needed Independent 
Park et al [39] IMU & Touch - L-Th, R-Th, 92.4% After touch Needed Independent 

L-In, R-In 
Lochtefeld et al [29] Touch - LH, RH, BH 98.5% During unlock Needed Independent 
Je Avery et al [1] IMU - L-Th, R-Th 83.6% During unlock Needed Dependent 
Kim et al [21] Capacitive Needed 8 hand grips 99.1% Continuous - Independent 

Hinckley et al [11] Self-capacitance Needed Hand grips N/A Continuous - Independent 
WhichHand [28] IMUs Needed LH, RH 97.0% Continuous - Independent 
HandyTrak Camera - LH, RH, BH 89.0% Continuous - Dependent 

which diferentiates between diferent hand postures (one- or two-
handed interaction, use of thumb or index fnger). Gripsense achieved 
this using touch events and IMU sensor values while users per-
formed fve touch interaction steps and attained an accuracy of 
84.3%. Goel et al also introduced ContextType [8], an adaptive text 
entry system that improves mobile touch screen text entry, by uti-
lizing IMU sensor values for an average of 4.9 touch events to infer 
a user’s hand posture (one- or two-handed thumb or index fnger 
interaction), doing so with an accuracy of 89.7%. Park et al [39] 
also made use of the smartphone’s touchscreen and its built-in 
gyroscope and accelerometer to distinguish between fve and four 
hand poses (left thumb, right thumb, left index fnger, right index 
fnger, and/or both thumbs) with 87.7% and 92.4% accuracies, re-
spectively. Also, Lochtefeld et al [29] introduced a technique to 
determine handedness (left or right-handed) using the user’s un-
locking behavior (pin, swipe, and pattern unlock) and achieved a 
high 98.51% accuracy. They achieved this using a k-nearest neigh-
bor comparison of the internal sensor readings of the smartphone 
during the unlocking process. Finally, Avery et al [1] proposed a 
method to detect hand mode (left- or right-handed) by analyzing 
the built-in orientation sensor stream as the phone is lifted and 
unlocked before the user touches the screen with 83.6% accuracy. 
The limitation with these works is that they require explicit input 
from the user [8, 9, 39] or can only provide hand mode tracking 
at limited scenarios [1, 29] such as unlocking the phone. In other 
words, these works cannot continuously track the holding hand at 
any moment without explicit input from the user. 

To address these issues, some researchers have proposed methods 
to continuously track how people are holding their smartphones 
by using additional hardware. Kim et al [21], for example, placed 
an array of capacitive sensors underneath the phone case to detect 
eight diferent hand grip patterns (including single-handed, two-
handed, horizontal, vertical), with an accuracy of 99.1%. Hinckley 
et al [11] developed a self-capacitance touchscreen that employed 
sensors on the touchscreen display to recognize multiple hovering 
fngers and determined accurately whether the smartphone was 
being held with both hands or one hand. Whichhand [28] uses 
the relationship of orientation sensors from a smartphone and 

a smartwatch to automatically detect hand mode (left- or right-
handed), showing an accuracy of 97.0%. These approaches, however, 
require external sensors or an additional device to be implemented, 
which do not make them immediately available on commodity 
smartphones. 

In contrast, HandyTrak is the frst technology that can contin-
uously track the holding hand without requiring any prior user 
interaction on a commodity smartphone. 

3 DESIGN OF HANDYTRAK 
Advances in computer vision and in mobile phones ofer an op-
portunity to utilize the built-in front camera to create new mobile 
interactions beyond taking photos and videos [31, 33, 45, 48]. Our 
system, HandyTrak, is an AI-powered software system that lever-
ages the built-in front camera in a commodity smartphone to detect 
which hand is holding the phone for providing an adaptive user 
interface. 

The idea of our system is inspired by the camera relocalization 
problem [3, 7, 19, 23, 27] in robotics and computer vision where 
a camera position is estimated from the images captured by the 
camera. Likewise, our work infers which hand a user holds the 
smartphone with by employing the user’s body images taken by 
the built-in front camera. As shown in Figure 1.3, captured body 
silhouettes are diferent depending on whether the phone is held 
in a user’s left, right, or both hands. For example, the length of 
the shoulder line and the position of the head difers depending 
on the position of the phone while a user holding and operating it. 
Furthermore, the diference between the camera angles when the 
phone is held in the left arm versus when held in the right becomes 
more apparent when the phone is tilted to either to the left or right 
(see Figure 1.e and f). We believe that these diferences are more 
than informative enough to train a deep learning model to classify 
hand mode. 

To verify the feasibility of our new approach, we explore fve 
hand positions under three common mobile phone use scenarios 
[13, 26] as shown in Figure 3. Also, we investigate the efect of the 
built-in camera locations on our system since the location of the 
front-facing camera in the phone varies by manufacturer. Based 

1212



UIST ’21, October 10–14, 2021, Virtual Event, USA Lim et al. 

Figure 3: Experimental setup. Data collection was conducted 
under three common mobile use scenarios for the fve dif-
ferent hand postures: (1) standing, (2) resting against a desk, 
and (3) sitting on a chair. 

on these fndings, we developed the following research questions 
(RQs) below: 

• RQ1: Is it possible to continuously classify three types of 
hand mode (i.e., left, right, or both hands) by employing the 
body silhouette images captured by the front camera under 
three common scenarios of using the phone (i.e., standing, 
sitting, and resting toward a desk)? 

• RQ2: Would the performance be better if the phone is held 
in a tilted way, towards the right or left rather than in the 
middle? 

• RQ3: Will our recognition system work regardless of the fve 
diferent camera positions? 

To examine the research questions, we developed a deep learn-
ing classifcation model by leveraging computer vision techniques. 
Then, we conducted a user study to evaluate recognition accuracy 
and discuss the feasibility of deploying HandyTrak in real-world 
applications. 

4 SYSTEM DESIGN 
In this section, we present the implementation of HandyTrak, which 
consists of two parts: image preprocessing and a deep learning 
pipeline (see. Figure 4). First, we introduce human body segmenta-
tion techniques to get body silhouette images. Then, we describe 
the implementation of our deep learning model. 

4.1 Image Preprocessing 
The key idea of our system is to use the body silhouette images as 
input for our deep learning model. We frst normalize the size of 
the input images to 224 × 224. Then, we segment the human body 
from the background. In this step, for each pixel, we decide whether 
it belongs to the background or the human body. Many previous 
machine learning systems have demonstrated reliable performance 
on this task [30, 34]. We decided to use a well-known pre-trained 

Figure 4: System Overview. Raw images of the user’s upper 
body are preprocessed to produce segmented images. The 
segmented images are used as input to a VGG 16 model to 
perform classifcation to determine which hand(s) the user 
was using. 

Figure 5: The output of segmented images using FCN-
ResNet101 [30]. Raw images captured by the built-in front 
camera are processed and segmented from the background. 
Each pixel is labeled as either part of the human body 
(white), or as part of the background (black). 

model named FCN-ResNet101 [30]1 as our image semantic segmen-
tation method, which demonstrated promising performance in the 
paper and our experiments as shown in Figure 5. We used all data 
(even if the segmentation failed) for training and testing purposes. 

4.2 Deep Learning Pipeline 
These segmented body silhouette images are sent to a customized 
deep learning model to classify three modes of holding (left, right, 
and both hands). This model, called HandyNet, was developed on 
the pre-trained model VGG 162, which is known to perform well in 
image classifcation [42]. Our model consists of a VGG 16 backbone 
with a classifcation block behind it as shown in Figure 4.c. The 
classifcation block has a fatten layer, a dropout layer (p = 0.5) to 
reduce over-ftting [43], and a softmax layer for fnal outputs. The 
softmax layer outputs three probability values, determining left 
hand, right hand, or both hands. Before training, we freeze all VGG 
16 layers. 

Our model was trained for 2 epochs on the training set. We use 
a batch size of 32, with a categorical cross-entropy loss function 
and the Adam optimizer. The parameter (p = 0.5) of dropout and 
the batch size (32) were empirically decided. In total, there are 
14,789,955 parameters in the model. There are 30.7 billion foating-
point operations to perform inference on one image. This takes 
roughly 0.025 seconds on our server using the GPU (AMD Thread-
ripper 3960X CPU and RTX2080Ti GPUs with 256GB memory). 

1https://pytorch.org/hub/pytorch_vision_fcn_resnet101/
2https://keras.io/api/applications/vgg/ 

1213

https://1https://pytorch.org/hub/pytorch_vision_fcn_resnet101


HandyTrak: Recognizing the Holding Hand on a Commodity Smartphone from Body Silhouete Images UIST ’21, October 10–14, 2021, Virtual Event, USA 

5 EVALUATION 
To evaluate our system, we conducted a user study with ten partic-
ipants. To simulate the diferent positions of the front cameras on 
diferent smartphones, we attached fve miniature RGB cameras on 
the top of the participant’s smartphone. Each participant was asked 
to interact with their smartphone under two hand positions (in the 
middle and in the skewed) and three common scenarios of using 
a smartphone (standing, sitting, and resting against a desk). We 
recorded the images on all fve cameras which are used to classify 
which hand they hold the phone with. 

5.1 Apparatus 
Figure 6 shows our experiment setup consisting of fve RGB cam-
eras, a smartphone, and fve Raspberry Pis. A camera module has 
a view angle of 64 × 48 degrees and fxed focus, allowing for the 
collection of images with 640 × 480 resolution at 30 FPS. Flexible 
printed circuit (FPC) cables are employed to connect the cameras 
and the Raspberry Pis. The fve cameras were placed in a row on a 
black plastic sheet at intervals of 12 millimeters and the black sheet 
is attached to the participant’s phone. We had each participant 
use their own phone in the study for two reasons. 1) A participant 
would be more comfortable using their own phone compared to 
using a new phone. 2) Using participants’ phones would allow us to 
evaluate our system on a variety of phones of diferent dimensions. 
All participants reported that the attached fexible cable did not 
afect the experience with holding and operating the phone. 

5.2 Participants 
Ten participants (six females, two left-handed) ranging in age from 
18 to 31 (M: 24.0, SD: 5.2) were recruited in a university. All male 
and four female participants had short hair while the rest of the 
female participants had long hair that touched their shoulders. Only 
eight participants had experience with using facial recognition 
for unlocking a smartphone. All participants had experience with 
operating their phones with left, right, and both hands. 

Figure 6: Device setup. Setup consists of fve RGB cameras, 
a smartphone, and fve Raspberry Pis. Flexible printed cir-
cuit (FPC) cables connect the camera module to the camera 
serial interface (CSI) of the Raspberry Pi. The fve cameras 
are placed in a row on a black plastic sheet at intervals of 12 
millimeters. The black sheet is attached to the participant’s 
phone. 

5.3 Procedure 
We used a 3 × 2 within-subjects factorial design to collect images 
using front-facing cameras as shown in Figure 3. The data collection 
was conducted under three common mobile use scenarios [13]: 
standing, resting against a desk, and sitting on a chair. For each 
scenario, participants were asked to hold and operate the phone in 
two diferent ways: in the middle and in a skewed position. In total, 
participants were asked to hold their smartphones for fve diferent 
hand poses: (a) left-hand (LH) in the middle, (b) both hands (BH) in 
the middle, (c) right-hand (RH) in the middle, (d) left-hand (LH) in 
left-skewed, and (e) right-hand (RH) in right-skewed. The order of 
the scenarios and the hand poses was randomized during the data 
collection. 

For each hand pose, we asked participants to perform three 
common mobile tasks as they normally would: look at the phone 
for face ID unlock, open and browse through an application, and 
then take a selfe. Each round of the three tasks took about 6∼15 
seconds to perform and was repeated at least 10 times in 3 minutes, 
which helped us to collect the images from various positions of the 
phone in hand poses. Also, since the participants were not aware 
of the study’s purpose (detecting the holding hand) until the study 
was done, they were unlikely to perform the tasks in unnatural 
ways for the obtrusive cameras. 

5.4 Data Collection 
The RGB images from the fve cameras were saved with the size of 
244 × 244 in each Raspberry Pi while participants performed tasks 
with diferent hand poses under the three scenarios. A total of about 
4M images were collected, including 810,000 per each camera posi-
tion (30 fps × 60 seconds× 3 minutes×5 hand poses×3 scenarios× 
10 participants). During the data collection, 804 images were lost 
from one participant’s data due to technical issues (connection error 
on camera #5 from P6). All images except for the lost images were 
transferred to our main server for further analysis. 

5.5 Validation Method 
We built a user-dependent model for each participant and each 
camera (5 models per participant). For each participant, we frst 
separated the data into 15 categories based on the hand positions 
and mobile phone usages scenarios as shown in Figure 3. Then, we 
split our data into a training set and a testing set. We use the frst 
80% of the data in each category for training the model and the 
last 20% of the data as the testing set. Please note that the collected 
data was not shufed when splitting the training and testing set. 
For each camera, we used its own dataset for training and testing 
purposes. 

5.6 Result 
Overall, HandyTrak achieved a classifcation accuracy on hand 
mode, i.e., left, right, or both hands, with an average of 89.03% 
(SD: 8.98%) under two hand positions and three scenarios using 
fve cameras at a 2Hz sampling rate. In the middle position, the 
average accuracies in the standing, sitting in a chair, and resting 
against a desk scenarios are 82.6%, 88.0%, and 82.9%, respectively. 
The range of accuracies across participants is 64.8%-94.6%, 64.4%-
98.7%, and 53.8%-95.9% for each of the scenarios, respectively. For 

1214



UIST ’21, October 10–14, 2021, Virtual Event, USA Lim et al. 

Figure 7: The efect of Window Size and Camera Positions. As the window size increases, the accuracy increases regardless 
of camera position. We choose a window size of 30 since the response time of one second is likely acceptable for mobile user 
interfaces [36]. 

the skewed position, the average accuracies are 96.2%, 94.6%, and 
96.8% with ranges of 90.7%-100%, 85.5%-100%, and 85.9-100% across 
participants for each position, respectively. 

In the following sections, we analyze our system performance 
in the following aspects: sliding window and majority vote, frame 
rate, camera positions, hand positions, and common mobile tasks. 

5.6.1 Sliding window and Majority vote. The deep learning model 
we deployed makes a classifcation on each frame, which is not 
needed for most applications. Furthermore, temporal information 
can be used to improve recognition accuracy [5]. Therefore, we 
applied a sliding window with diferent sizes ranging from 10 (0.3 
seconds) to 120 (4 seconds). There was a 50% overlap between 
windows. Within each window, the fnal recognition result of hand 
modes is based on the most common label over the individual 

Figure 8: Training Data and Sliding Window Size Efect. 
HandyTrak can achieve comparable performance even with 
less training data if the window is large, which helps reduce 
the user’s training efort to develop the model. 

classifcation results on frames. We examined two hand positions: 
in the middle and in the skewed. The results (see Figure 7) show that 
the accuracy improves as the window size gets bigger. The average 
accuracy over all positions and cameras when the window size was 
10 was 87.2%. This increased to 92.3% when the window size was 
120. However, the larger window means a less sensitive system is 
detecting the holding hand. Considering that a one-second response 
time is likely acceptable for mobile user interfaces [36], we decided 
to employ the window size of 30 for all of the following evaluations, 
which had an average accuracy of 89.1%. 

5.6.2 Training Data and Sliding Window Size Efect. We conducted 
a thorough analysis of how the amount of training data and the 
sliding window size would impact the performance. As shown in 
Figure 8, further experiments showed that when we only used 
20% of the training data (3 minutes of training), HandyTrak still 
achieved accuracies of 84.5%, 88.2%, 90.92%, 91.83%, 93.15% with 
window sizes of 1 second, 4 seconds, 10 seconds, 30 seconds, and 60 
seconds, respectively. When we use only 1 minute of the training 
data, the performance varies from 77.4% to 87.2% with window 
sizes of 1 second and 1 minute, respectively. If the application is 
less responsive to the response time, HandyTrack can achieve even 
better performance (over 90% with a window of 10 seconds) with 
larger sliding windows even with only 3 minutes of training data. 

5.6.3 Frame Rate Efect. In our user study, we captured the pictures 
at a frame rate of 30. However, the frame rate has a considerable 
efect on power consumption [47]. Therefore, we further conducted 
experiments to understand how diferent frame rates would impact 
the performance of HandyTrak. In this experiment, the window 
size is the same, one second. We downsampled frame rate to 30Hz, 
15Hz, 10Hz, 8Hz, 6Hz, 5Hz, 4Hz, and 3Hz. Figure 9 shows this 
efect. When we downsampled the framerate, we kept the 2Hz 
label update frequency and adjusted the number of images in each 
window accordingly. 

At 30 frames per second, the average accuracy over all positions 
and cameras was 89.1%. When the frame rate was reduced to 3Hz, 

1215



HandyTrak: Recognizing the Holding Hand on a Commodity Smartphone from Body Silhouete Images UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 9: The efect of frame rate at a 2Hz sampling rate. Lower frame rates do not induce a signifcant drop in accuracy. 

the average accuracy was 87.9%. This is a 90% decrease in frame rate, 
yet the average accuracy was only reduced by 1.4%, indicating that 
this setup can reduce battery consumption and remain accurate. In 
what follows, we report accuracy when sampling every frame to 
present the maximum performance of HandyTrak. 

5.6.4 Five Camera Positions. Since the built-in front camera is 
positioned diferently for diferent manufacturers, we investigated 
the efect of camera positions on our system under three scenarios 
for each hand position. The average accuracies of the fve cameras 
(from left to right) were 90.1%, 89.6%, 88.9%, 88.9%, and 87.4%. 

We found that there is no diference on performance between 
fve camera positions and three scenarios for each hand position, 
respectively (middle: F4,45 = 0.2689, p = 0.8964 | skewed: F4,45 = 
0.2151, p = 0.9286), indicating that our system could be applied 
to various types of smartphone models having diferent camera 
positions. 

Figure 10: Confusion Matrix. For the skewed positions, we 
did not collect data where participants held the device with 
both hands. However, our model, which is trained on both 
middle and skewed position data, still predicts “Both” on 
skewed images. In the confusion matrix on the right, we in-
sert zeros in the middle column because no images in the 
skewed positions have an actual label of “Both”. 

5.6.5 Hand Positions: Middle vs Skewed. We hypothesize that our 
system has better performance when the phone is in a skewed 
position (95.84% (SD: 5.05%)) rather than in the middle (84.49% (SD: 
11.44%)) since the angle of the camera in a skewed pose makes big-
ger diferences on body images. The result shows that HandyTrak 
achieved higher accuracy when participants use their smartphone 
in the skewed position rather than in the middle regardless of the 
three scenarios and fve camera positions (F1,90 = 61.98, p < 7.446e-
12). Figure 10 and Figure 11 show the results under these two hand 
positions. They indicate that it was much harder to diferentiate 
between hands when the device was held closer to the center of 
the body rather than to the side. 

5.6.6 Opportunistic sensing for mobile applications. In opportunis-
tic sensing of the holding hand, we explored how HandyTrak would 
perform when users are interacting with applications (i.e., unlock-
ing, app browsing, and selfe). As we discussed in the introduction, 
HandyTrak allows for continuous tracking of the holding hand on 
commodity smartphones. In reality, most applications would not 
require continuous tracking of the holding hand as the user would 
not frequently change the holding hand, and taking and processing 
pictures can also take a lot of resources (e.g., energy). The goal of 
HandyTrak is to allow the developer and designer of mobile appli-
cations to acquire holding hand information at any time without 
explicitly requiring input from the user. 

To verify this goal, we conducted further experiments to clas-
sify the holding hand only using the images captured under three 
application scenarios: unlocking moments, opening and browsing 
an application, and taking a selfe. We manually labeled the testing 
set (last 20%) into three application scenarios: 1) unlocking, 2) app 
browsing, and 3) selfe. On average, for each participant, we labeled 
1735 unlocking frames, 7043 app browsing frames, and 4841 selfe 
frames. We used the model trained in the frst experiment (frst 80% 
of data for training) for the classifcation task. The window size is 1 
second. On average, HandyTrack was able to recognize the holding 
hand with accuracies of 87.56% (SD: 10.31%), 88.37% (SD: 6.28%), 
and 92.68% (SD: 6.47%) for 1) unlocking, 2) app browsing, and 3) 
selfe, respectively. This result is encouraging, which demonstrates 

1216



UIST ’21, October 10–14, 2021, Virtual Event, USA Lim et al. 

Figure 11: Result per participant under two positions: middle vs. skewed. The accuracy is better in the skewed positions for 
every participant. 

the feasibility for mobile apps to acquire holding hand information 
when needed. 

6 DISCUSSION AND LIMITATION 
Our system, HandyTrak, is an AI-powered system that can continu-
ously recognize hand mode by using a built-in camera in commodity 
smartphones. Here, we discuss possible applications and the op-
portunities and challenges of deploying HandyTrak in real-world 
scenarios. 

6.1 Potential Applications 
Continuous hand-mode detection can be used to make user input 
easier for enhancing mobile user interaction. At frst, our system 
could potentially improve current UIs for one-handed use [25, 35] 
by automatically adjusting a device’s layout and removing the need 
for manual input. For example, users can use one-handed mode 
right after unlocking the phone using face recognition. Also, our 
system provides one-handed input mode instantly, even if the user 
switches their hand mode to enter text. Second, with our system, 
interface designers could devise adaptive buttons [35] in various 
applications based on the continuous hand mode tracking. For 
instance, one could develop a virtual selfe mode button, a button 
that moves according to which hand is being used. Currently, selfes 
can be difcult to take because the button is typically located near 
the bottom of the screen, which tends to be difcult to touch when 
the arm is stretched at wide angles to take good pictures [44]. A 
virtual selfe mode button could help users take selfes more easily. 

6.2 Walking Scenario 
The study we presented above only evaluated the performance of 
the system when the user is not moving (e.g., sitting, standing). 
However, it is also important to understand how would HandyTrak 
perform if the user is in motion, as people do use smartphones while 
walking [12]. To investigate this issue, we conducted a follow-up 
user study with fve of the study participants (p1, p3, p4, p5, p6) who 
participated in the previous study. The overall tasks and procedure 

are similar to the frst study, except that the participant was asked 
to keep walking in a lab setting. Participants carried the Raspberry 
Pi, which was powered by a power bank while walking. We used 
the frst 80% of the data for training and the last 20% of the data 
for testing. The results showed that HandyTrack was still able to 
recognize the three hand-holding modes with an average accuracy 
of 88.36%, which only dropped 0.67% compared to when the user 
is static. The result shows that HandyTrak still works when users 
operate their smartphones while walking. 

6.3 Changing Environments and Scenarios & 
In-The-Wild Evaluation 

Changing environments and scenarios can potentially impact the 
performance of our system. The walking scenario suggests that 
changing the environment would not afect the performance of our 
system. However, more study in the wild (e.g., various backgrounds, 
body shapes, hairstyles) needs to be done. When the participants 
were walking around the room, the background and light conditions 
constantly changed. The system achieved comparable performance 
in walking scenarios with an accuracy of 88% compared to 89% in 
static scenarios. This demonstrated that HandyTrak could work 
well when the background changes. 

We plan to explore diferent technical solutions to address this 
problem. 1) We can generate huge synthetic training sets with a 
great diversity of hairstyles, body shapes and backgrounds, by re-
placing the backgrounds in the images virtually, as demonstrated in 
previous work [14]. This would help us to simulate the backgrounds 
and hairstyles in the real world without collecting more data. 2) 
Allowing the model to passively collect data and regularly update 
the model in the wild can help address this challenge. 

6.4 Battery and Privacy Issues 
Although our system can continuously track a user’s hand mode 
while they operate the phone, it could quickly drain batteries on 
the phone and cause privacy issues from pictures being taken of 
users. However, we believe that these problems can be addressed 

1217



HandyTrak: Recognizing the Holding Hand on a Commodity Smartphone from Body Silhouete Images UIST ’21, October 10–14, 2021, Virtual Event, USA 

by applying our system at selective times as well as integrating 
other sensors. For example, our system could be used to activate 
only for certain time periods depending on the purpose of its use 
in applications, e.g. at the moment of unlocking or at the touch 
moment for opening a keyboard layout. Deploying our system at 
certain time periods would save battery as well as protect users’ 
privacy. Also, our system can be integrated with other detection 
techniques using touch interaction trace and IMU sensor values 
[8, 9, 39] to be more intelligent for sensing the hand mode. For 
instance, most people would not frequently change the holding 
hand. Therefore, instead of continuously tracking the holding hand, 
we can use the built-in IMU sensor to detect the possible moment 
of switching the holding hands and capture pictures only when 
a possible switching event happens. Furthermore, an on-screen 
indicator that the front camera is tracking can be one way to reduce 
privacy concerns for users. 

6.5 Deploy HandyTrak in Real-time 
Our current system shows good performance in detecting hand 
mode, but it takes a lot of computing power for both the data 
preprocessing and the neural network classifer. Since it could be 
difcult to run on a mobile device for real-time classifcation, we 
have experimented with alternative, less computationally expensive, 
methods for the mobile device. First, we reduced the size of the input 
images to 16×16 for speed. We leveraged an image segmenter named 
ShufeNet V2 [46] 3 and a simple convolutional neural network 
classifer containing two Convolution2D layers (64 and 32 flters, 
respectively), a fatten layer, and a softmax layer for determining 
hand mode. This setup worked well in real-time on our Android 
device (see accompanying video). 

We tested this on the data set from the user study with the same 
validation method. It showed an average accuracy of 84.85% (SD: 
13.4%) under two hand positions and fve cameras. Specifcally, 
HandyTrak achieved an average accuracy of 73.85% (SD: 13.3%) and 
95.84% (SD: 13.4%) for middle and skewed hand poses, respectively. 
These accuracies are slightly worse than those of HandyNet, but 
they can be potentially improved by using other ways to deploy our 
system on a mobile device. For the data preprocessing, there are 
many image segmentation techniques for mobile devices [40]4. In 
addition, there are ways to deploy large networks, like our VGG 16 
network, on mobile devices while running quickly [10, 22, 32, 37]. 

6.6 Wearing a Mask 
Living in the pandemic caused by COVID-19, many people wear 
masks throughout the day. To understand how the mask would 
impact our system, we experimented with mask efects on two re-
searchers ( Figure 12.a) to classify hand mode in the sitting position. 
We developed our model using this data in the same fashion, and 
it achieved an accuracy of 98.8% in a preliminary experiment. The 
high accuracy indicates that our system would potentially work 
well even when the user wears a face mask. This is not a surprise to 
us, as the face mask would not change the silhouettes of the body 
images. 

3https://github.com/sercant/android-segmentation-app 
4https://github.com/tensorfow/examples/tree/master/lite/examples/image_segmentation 
https://www.tensorfow.org/lite/examples/segmentation/overview 

Figure 12: Efect of wearing masks and faulty segmentation 
outcomes. As shown in (a), even when users wear masks, 
image frames are still segmented properly. As shown in (b), 
when only a small part of the user’s upper body such as the 
face appears in the frame, the segmented images frames are 
sometimes faulty. 

6.7 Improving Segmentation 
Robust segmentation is essential for our system. However, the 
current segmentation technique in our system is not perfect yet. 
For example, it tends to miss some pixels of the person on certain 
images where only a small part of the face and none of the body 
is shown (See Figure 12.b) due to grip changes [6, 20]. Sometimes, 
inaccurate segmentation also occurs when participants change their 
hand grip between tasks. We used all data (even if the segmentation 
failed) for training and testing purposes. Removing the images that 
fail in the segmentation would further improve performance. 

To improve the image segmentation, we could consider using 
the 3D-depth camera. Some commercial phones already have 3D-
depth cameras (e.g. Face ID on the latest iPhone). There are image 
segmentation techniques using both color and depth information [4, 
38]. The additional information in a 3D-depth image could also be 
useful to recognize hand mode. We believe using depth information 
would further improve the segmentation of the body from the 
background, which can lead to improved performance. We plan to 
further explore this direction in the future. 

6.8 User-Dependency Model and Possible 
Training Methods 

Requiring the user to provide training data is one potential limi-
tation of HandyTrak. However, we believe that how the user ex-
perience will be impacted depends on how much efort the user 
needs to spend to train the system. To further reduce the training 
eforts from the user, HandyTrak could potentially passively collect 
training data and regularly update the model. The ground truth can 
be acquired by 1) asking the user to input holding hand occasionally, 
or 2) using prior work which uses other methods (e.g., IMU, touch 
input) to recognize the holding hand. 

6.9 User Independent Model Evaluation 
We investigate how well a user-independent model would perform. 
We develop and evaluate our model using a leave-one-participant-
out method, where we use nine participants’ data for training and 
one participant for testing. We repeated this process ten times (i.e., 
all the combinations from the ten users). The result shows that 
HandyTrak achieved 56.42% (SD: 4.21%) and 59.12% (SD: 3.91%) 
respectively in middle and skewed positions, indicating that our 
system could not perform well for a user-independent study to 

1218

https://www.tensorflow.org/lite/examples/segmentation/overview
https://4https://github.com/tensorflow/examples/tree/master/lite/examples/image_segmentation
https://3https://github.com/sercant/android-segmentation-app


UIST ’21, October 10–14, 2021, Virtual Event, USA Lim et al. 

infer which hand participants hold the smartphone with. This was 
not surprising at all. Because diferent participants have diferent 
hand poses and body shapes, it is hard to expect a model with 
such a small training set to generalize well on a new user’s data. 
However, if provided with a huge amount of data on diferent 
hand positions and body shapes, our model can potentially be 
improved. Given the limited resources we have as a research lab for 
large-scale data collection, we hope to collaborate with industry 
partners to investigate how much training data is needed for the 
user-independent model. Using a synthetic dataset can also help 
address this question, which was discussed in Section 6.3. 

6.10 Limitation and future work 
Overall, our system performs well but there is still room for im-
provement, just like any research prototype. First, our system only 
uses three poses (standing, sitting, and resting against a desk). There 
are more diverse poses that people use when using a smartphone 
[13, 26] (e.g., on the foor, prone, spine, and so on) that we do not 
experiment with. To generalize our system in real-world scenar-
ios, we need to collect the data and train the model using images 
from more diverse poses since diferent poses lead to diferent im-
ages. Second, our system diferentiates between left, right, and both 
hands. However, there are other hand modes such as cradling [12] 
that we did not cover in our study. We will further explore more 
hand modes in future work with other sensors such as IMU. Third, 
we only evaluated our system when the phone is held in portrait 
mode. We believe that it could be possible to create a system that 
would also work in landscape mode. Lastly, computer vision-based 
techniques have an inherent problem when working in the dark. 
Our system may not work at night or in a dark room, but we believe 
it would be addressed with infra-red depth cameras like the one 
used in the latest iPhone. 

7 CONCLUSION 
In this paper, we present HandyTrak, an AI-powered software so-
lution for commodity smartphones, to continuously detect which 
hand is holding the phone. It uses the front-facing camera to cap-
ture images of the user, which are learned by a customized deep 
learning model to infer the holding hand (left, right, or both). A user 
study with 10 participants showed that our system can continuously 
recognize the three hand holding modes with an average accuracy 
of 89.03% at 2Hz across diferent settings. This encouraging result 
suggests that HandyTrak can be deployed on mobile applications 
to acquire the holding hand information without requiring any 
additional hardware or explicit input from the user. 

REFERENCES 
[1] Jef Avery, Daniel Vogel, Edward Lank, Damien Masson, and Hanae Rateau. 2019. 

Holding patterns: detecting handedness with a moving smartphone at pickup. In 
Proceedings of the 31st Conference on l’Interaction Homme-Machine. 1–7. 

[2] Joanna Bergstrom-Lehtovirta and Antti Oulasvirta. 2014. Modeling the functional 
area of the thumb on mobile touchscreen surfaces. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems. 1991–2000. 

[3] Tat-Jen Cham, Arridhana Ciptadi, Wei-Chian Tan, Minh-Tri Pham, and Liang-
Tien Chia. 2010. Estimating camera pose from a single urban ground-view 
omnidirectional image and a 2D building outline map. In 2010 IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition. IEEE, 366–373. 

[4] Meir Johnathan Dahan, Nir Chen, Ariel Shamir, and Daniel Cohen-Or. 2012. 
Combining color and depth for enhanced image segmentation and retargeting. 
The Visual Computer 28, 12 (2012), 1181–1193. 

[5] Akbar Dehghani, Omid Sarbishei, Tristan Glatard, and Emad Shihab. 2019. A 
quantitative comparison of overlapping and non-overlapping sliding windows 
for human activity recognition using inertial sensors. Sensors 19, 22 (2019), 5026. 

[6] Rachel Eardley, Anne Roudaut, Steve Gill, and Stephen J Thompson. 2018. Inves-
tigating How Smartphone Movement is Afected by Body Posture. In Proceedings 
of the 2018 CHI Conference on Human Factors in Computing Systems. 1–8. 

[7] Pradipta Ghosh, Xiaochen Liu, Hang Qiu, Marcos AM Vieira, Gaurav S Sukhatme, 
and Ramesh Govindan. 2020. On Localizing a Camera from a Single Image. arXiv 
preprint arXiv:2003.10664 (2020). 

[8] Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N Patel, and Jacob O Wob-
brock. 2013. ContextType: using hand posture information to improve mobile 
touch screen text entry. In Proceedings of the SIGCHI conference on human factors 
in computing systems. 2795–2798. 

[9] Mayank Goel, Jacob Wobbrock, and Shwetak Patel. 2012. Gripsense: using built-
in sensors to detect hand posture and pressure on commodity mobile phones. In 
Proceedings of the 25th annual ACM symposium on User interface software and 
technology. 545–554. 

[10] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. Amc: 
Automl for model compression and acceleration on mobile devices. In Proceedings 
of the European Conference on Computer Vision (ECCV). 784–800. 

[11] Ken Hinckley, Seongkook Heo, Michel Pahud, Christian Holz, Hrvoje Benko, 
Abigail Sellen, Richard Banks, Kenton O’Hara, Gavin Smyth, and William Buxton. 
2016. Pre-touch sensing for mobile interaction. In Proceedings of the 2016 CHI 
Conference on Human Factors in Computing Systems. 2869–2881. 

[12] Steven Hoober. 2013. How do users really hold mobile devices. Tillgänglig 
http://www. uxmatters. com/mt/archives/2013/02/how-do-users-really-hold-mobile-
devices. php (Hämtad 2015-02-11) (2013). 

[13] Michael Xuelin Huang, Jiajia Li, Grace Ngai, and Hong Va Leong. 2017. 
Screenglint: Practical, in-situ gaze estimation on smartphones. In Proceedings of 
the 2017 CHI Conference on Human Factors in Computing Systems. 2546–2557. 

[14] Dong-Hyun Hwang, Kohei Aso, Ye Yuan, Kris Kitani, and Hideki Koike. 2020. 
MonoEye: Multimodal Human Motion Capture System Using A Single Ultra-
Wide Fisheye Camera. In Proceedings of the 33rd Annual ACM Symposium on User 
Interface Software and Technology. 98–111. 

[15] Apple Inc. 2021. About the keyboards settings on your iPhone, iPad, and iPod 
touch. https://support.apple.com/en-us/HT202178 (2021). 

[16] Apple Inc. 2021. Adjust touch settings on iPhone. 
https://support.apple.com/guide/iphone/touch-iph77bcdd132/14.0/ios/14.0 (2021). 

[17] Apple Inc. 2021. Use Face ID on your iPhone or iPad Pro. 
https://support.apple.com/en-us/HT208109 / php (Hämtad 2021-01-22) (2021). 

[18] Samsung Inc. 2021. Using One Handed Mode on my Samsung Phone. 
https://www.samsung.com/au/support/mobile-devices/using-one-handed-mode/ php 
(Hämtad 2021-03-19) (2021). 

[19] Alex Kendall, Matthew Grimes, and Roberto Cipolla. 2015. Posenet: A convolu-
tional network for real-time 6-dof camera relocalization. In Proceedings of the 
IEEE international conference on computer vision. 2938–2946. 

[20] Mohamed Khamis, Anita Baier, Niels Henze, Florian Alt, and Andreas Bulling. 
2018. Understanding face and eye visibility in front-facing cameras of smart-
phones used in the wild. In Proceedings of the 2018 CHI Conference on Human 
Factors in Computing Systems. 1–12. 

[21] Kee-Eung Kim, Wook Chang, Sung-Jung Cho, Junghyun Shim, Hyunjeong Lee, 
Joonah Park, Youngbeom Lee, Sangryoung Kim, et al. 2006. Hand grip pattern 
recognition for mobile user interfaces. In AAAI. 1789–1794. 

[22] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and 
Dongjun Shin. 2015. Compression of deep convolutional neural networks for 
fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015). 

[23] Zakaria Laskar, Iaroslav Melekhov, Surya Kalia, and Juho Kannala. 2017. Camera 
relocalization by computing pairwise relative poses using convolutional neural 
network. In Proceedings of the IEEE International Conference on Computer Vision 
Workshops. 929–938. 

[24] Huy Viet Le, Sven Mayer, Patrick Bader, and Niels Henze. 2018. Fingers’ Range 
and Comfortable Area for One-Handed Smartphone Interaction Beyond the 
Touchscreen. In Proceedings of the 2018 CHI Conference on Human Factors in 
Computing Systems. 1–12. 

[25] Hosub Lee and Young Sang Choi. 2011. Fit your hand: personalized user interface 
considering physical attributes of mobile device users. In Proceedings of the 24th 
annual ACM symposium adjunct on User interface software and technology. 59–60. 

[26] Florian Lehmann and Michael Kipp. 2018. How to hold your phone when tapping: 
A comparative study of performance, precision, and errors. In Proceedings of the 
2018 ACM International Conference on Interactive Surfaces and Spaces. 115–127. 

[27] Xiaotian Li, Juha Ylioinas, Jakob Verbeek, and Juho Kannala. 2018. Scene coordi-
nate regression with angle-based reprojection loss for camera relocalization. In 
Proceedings of the European Conference on Computer Vision (ECCV) Workshops. 
0–0. 

[28] Hyunchul Lim, Gwangseok An, Yoonkyong Cho, Kyogu Lee, and Bongwon Suh. 
2016. WhichHand: automatic recognition of a smartphone’s position in the 
hand using a smartwatch. In Proceedings of the 18th International Conference on 
Human-Computer Interaction with Mobile Devices and Services Adjunct. 675–681. 

1219

https://www.samsung.com/au/support/mobile-devices/using-one-handed-mode
https://support.apple.com/en-us/HT208109
https://support.apple.com/guide/iphone/touch-iph77bcdd132/14.0/ios/14.0
https://support.apple.com/en-us/HT202178
http://www


HandyTrak: Recognizing the Holding Hand on a Commodity Smartphone from Body Silhouete Images UIST ’21, October 10–14, 2021, Virtual Event, USA 

[29] Markus Löchtefeld, Phillip Schardt, Antonio Krüger, and Sebastian Boring. 2015. 
Detecting users handedness for ergonomic adaptation of mobile user interfaces. 
In Proceedings of the 14th International Conference on Mobile and Ubiquitous 
Multimedia. 245–249. 

[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional 
networks for semantic segmentation. In Proceedings of the IEEE conference on 
computer vision and pattern recognition. 3431–3440. 

[31] Mona Hosseinkhani Loorak, Wei Zhou, Ha Trinh, Jian Zhao, and Wei Li. 2019. 
Hand-over-face input sensing for interaction with smartphones through the built-
in camera. In Proceedings of the 21st International Conference on Human-Computer 
Interaction with Mobile Devices and Services. 1–12. 

[32] Jiachen Mao, Zhongda Yang, Wei Wen, Chunpeng Wu, Linghao Song, Kent W 
Nixon, Xiang Chen, Hai Li, and Yiran Chen. 2017. Mednn: A distributed mobile 
system with enhanced partition and deployment for large-scale dnns. In 2017 
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 
751–756. 

[33] Sven Mayer, Gierad Laput, and Chris Harrison. 2020. Enhancing Mobile Voice 
Assistants with WorldGaze. In Proceedings of the 2020 CHI Conference on Human 
Factors in Computing Systems. 1–10. 

[34] Greg Mori, Xiaofeng Ren, Alexei A Efros, and Jitendra Malik. 2004. Recovering 
human body confgurations: Combining segmentation and recognition. In Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, 2004. CVPR 2004., Vol. 2. IEEE, II–II. 

[35] Kriti Nelavelli and Thomas Ploetz. 2018. Adaptive App Design by Detecting 
Handedness. arXiv preprint arXiv:1805.08367 (2018). 

[36] Jakob Nielsen. 1994. Usability engineering. Morgan Kaufmann. 
[37] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi 

Wang, and Bin Ren. 2020. Patdnn: Achieving real-time dnn execution on mobile 
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth 
International Conference on Architectural Support for Programming Languages and 
Operating Systems. 907–922. 

[38] Cristina Palmero, Albert Clapés, Chris Bahnsen, Andreas Møgelmose, Thomas B 
Moeslund, and Sergio Escalera. 2016. Multi-modal rgb–depth–thermal human 
body segmentation. International Journal of Computer Vision 118, 2 (2016), 217– 
239. 

[39] Chanho Park and Takefumi Ogawa. 2015. A Study on Grasp Recognition Inde-
pendent of Users’ Situations Using Built-in Sensors of Smartphones. In Adjunct 
Proceedings of the 28th Annual ACM Symposium on User Interface Software & 
Technology. 69–70. 

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In 
Proceedings of the IEEE conference on computer vision and pattern recognition. 
4510–4520. 

[41] Sayan Sarcar, Chaklam Silpasuwanchai, William Delamare, Ayumu Ono, Antti 
Oulasvirta, and Xiangshi Ren. 2019. Exploring performance of thumb input 
for pointing and dragging tasks on mobile device. In Proceedings of Asian CHI 
Symposium 2019: Emerging HCI Research Collection. 38–45. 

[42] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks 
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). 

[43] Nitish Srivastava, Geofrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan 
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from 
overftting. The journal of machine learning research 15, 1 (2014), 1929–1958. 

[44] Leigh Stark. 2018. How to take photos without touching your phone’s 
screen. https://www.pickr.com.au/how-to/2018/how-to-take-photos-without-
touching-your-phones-screen/ php (Hämtad 2018-01-30) (2018). 

[45] Ke Sun, Chun Yu, Weinan Shi, Lan Liu, and Yuanchun Shi. 2018. Lip-interact: 
Improving mobile device interaction with silent speech commands. In Proceedings 
of the 31st Annual ACM Symposium on User Interface Software and Technology. 
581–593. 

[46] Sercan Türkmen and Janne Heikkilä. 2019. An Efcient Solution for Semantic 
Segmentation: ShufeNet V2 with Atrous Separable Convolutions. In Image 
Analysis, Michael Felsberg, Per-Erik Forssén, Ida-Maria Sintorn, and Jonas Unger 
(Eds.), Vol. 11482. Springer International Publishing, Cham, 41–53. https://doi. 
org/10.1007/978-3-030-20205-7_4 

[47] Radu-Daniel Vatavu. 2011. The efect of sampling rate on the performance 
of template-based gesture recognizers. In Proceedings of the 13th international 
conference on multimodal interfaces. 271–278. 

[48] Chun Yu, Xiaoying Wei, Shubh Vachher, Yue Qin, Chen Liang, Yueting Weng, 
Yizheng Gu, and Yuanchun Shi. 2019. Handsee: enabling full hand interaction 
on smartphone with front camera-based stereo vision. In Proceedings of the 2019 
CHI Conference on Human Factors in Computing Systems. 1–13. 

1220

https://doi.org/10.1007/978-3-030-20205-7_4
https://doi.org/10.1007/978-3-030-20205-7_4
https://www.pickr.com.au/how-to/2018/how-to-take-photos-without

	Abstract
	1 Introduction
	2 Related Work
	3 Design of HandyTrak
	4 System Design
	4.1 Image Preprocessing
	4.2 Deep Learning Pipeline

	5 evaluation
	5.1 Apparatus
	5.2 Participants
	5.3 Procedure
	5.4 Data Collection
	5.5 Validation Method
	5.6 Result

	6 Discussion and Limitation
	6.1 Potential Applications
	6.2 Walking Scenario
	6.3 Changing Environments and Scenarios & In-The-Wild Evaluation
	6.4 Battery and Privacy Issues
	6.5 Deploy HandyTrak in Real-time
	6.6 Wearing a Mask
	6.7 Improving Segmentation 
	6.8 User-Dependency Model and Possible Training Methods
	6.9 User Independent Model Evaluation
	6.10 Limitation and future work

	7 Conclusion
	References

