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This paper presents SpeeChin, a smart necklace that can recognize 54 English and 44 Chinese silent speech commands. A
customized infrared (IR) imaging system is mounted on a necklace to capture images of the neck and face from under the chin.
These images are first pre-processed and then deep learned by an end-to-end deep convolutional-recurrent-neural-network
(CRNN) model to infer different silent speech commands. A user study with 20 participants (10 participants for each language)
showed that SpeeChin could recognize 54 English and 44 Chinese silent speech commands with average cross-session
accuracies of 90.5% and 91.6%, respectively. To further investigate the potential of SpeeChin in recognizing other silent speech
commands, we conducted another study with 10 participants distinguishing between 72 one-syllable nonwords. Based on
the results from the user studies, we further discuss the challenges and opportunities of deploying SpeeChin in real-world
applications.

CCS Concepts: • Human-centered computing→ Ubiquitous computing; Gestural input.

Additional Key Words and Phrases: Silent Speech recognition, Deep learning, Computer vision

ACM Reference Format:
Ruidong Zhang, Mingyang Chen, Benjamin Steeper, Yaxuan Li, Zihan Yan, Yizhuo Chen, Songyun Tao, Tuochao Chen,
Hyunchul Lim, and Cheng Zhang. 2021. SpeeChin: A Smart Necklace for Silent Speech Recognition. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 5, 4, Article 192 (December 2021), 23 pages. https://doi.org/10.1145/3494987

Authors’ addresses: Ruidong Zhang, rz379@cornell.edu, Cornell University, USA; Mingyang Chen, mic016@ucsd.edu, University of California
San Diego, USA; Benjamin Steeper, bds238@cornell.edu, Cornell University, USA; Yaxuan Li, yaxuan.li@mail.mcgill.ca, McGill University,
Canada; Zihan Yan, zihanyan@zju.edu.cn, Zhejiang University, China; Yizhuo Chen, 3170105441@zju.edu.cn, Zhejiang University, China;
Songyun Tao, st938@cornell.edu, Cornell University and Dartmouth College, USA; Tuochao Chen, 1600012713@pku.edu.cn, Cornell University
and University of Washington, USA; Hyunchul Lim, hl2365@cornell.edu, Cornell University, USA; Cheng Zhang, chengzhang@cornell.edu,
Cornell University, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2021 Association for Computing Machinery.
2474-9567/2021/12-ART192 $15.00
https://doi.org/10.1145/3494987

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 192. Publication date: December 2021.

https://doi.org/10.1145/3494987
https://doi.org/10.1145/3494987
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3494987&domain=pdf&date_stamp=2021-12-30


192:2 • Zhang et al.

1 INTRODUCTION
Speech input has become one of the most popular input methods on commodity computing devices. Most of
the existing speech recognition technologies recognize speech using sound. However, such technologies require
users to voice the speech, which may not work well if the users are in public as it can introduce privacy concerns
and is less socially appropriate. Thus, a more privacy-aware and discreet speech input technology is needed.

Fig. 1. Overview of SpeeChin

Silent speech recognition (SSR) was invented as an alternative input method for scenarios where vocalizing
speech is inappropriate, or speech recognition is compromised by high background noise or for people who have
challenges in vocalizing speech [19]. It recognizes speech without requiring the user to voice any sounds into the
environment.

Researchers have developed a variety of SSR technologies. Based on whether the sensing technology is worn
on the body, existing SSR techniques can be classified into two categories: wearable and non-wearable approaches.
Most non-wearable SSR techniques use frontal cameras to capture the face and lip movements to distinguish silent
speech commands. However, these systems require the user to be in front of a camera without occlusion, which
is neither sustainable nor socially appropriate in daily activities. Wearable-based SSR techniques usually attach
different sensors (e.g., EEG [7, 55], sEMG [33, 34, 58, 70], magnetic [4, 9, 29, 36, 37, 57], ultrasonic [18, 32, 40],
acoustic [27, 50, 51], capacitive [38, 43]), camera [39] on or around the head to detect the movements of articulators
(e.g., skin, ear, tongue, muscles) involved in speech. However, compared to non-wearable-based SSR methods,
wearable-based approaches have limitations. Some require the user to attach electrodes on the face or mouth,
which is uncomfortable in real-life scenarios. Others do not work well after remounting the sensor, or can only
recognize a small set of commands[39]. Thus, there is an apparent need for a minimally obtrusive wearable sensing
device that can recognize a rich set of silent speech commands without compromising comfort or performance.
To address this challenge, we present SpeeChin, the first necklace-based SSR technology that can recognize

54 English and 44 Chinese silent speech commands. It uses a customized neck-mounted IR camera to capture
the images of the neck and face from under the chin. These images are pre-possessed and sent to an end-to-end
convolutional-recurrent-neural-network (CRNN) model for silent speech recognition. An overview of SpeeChin
is illustrated in Figure 1. A user study with 20 participants shows that it can recognize 54 English commands and
44 Chinese commands with an average accuracy of 90.5% and 91.6%, respectively.

Unlike standard voice recognition systems, current wearable SSR devices can only recognize a limited set of
pre-trained words. However, if they could recognize sound on a phoneme level, they could instead map phoneme
patterns to words, allowing them to recognize a much larger dataset without the need for word-level training. To
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investigate the potential of SpeeChin on distinguishing between more silent speech commands, we conducted a
third study with 10 participants to recognize 72 one-syllable nonwords. The results are presented and analyzed
in the discussion section.
To the best of our knowledge, SpeeChin is the first smart necklace that can recognize silent speech phrases

in two languages (54 English and 44 Chinese commands) with over 90% accuracy after remounting the device
(session-independently) without using frontal cameras. The contributions of SpeeChin are:

• We present the first smart necklace with a built-in IR camera that can distinguish a rich set of silent speech
commands in two languages (English and Chinese) by deep learning images of the neck and face captured
from under the chin.

• We conducted a user study with 20 participants to evaluate SpeeChin on distinguishing 54 English and 44
Chinese silent speech commands.

• We conducted another user study with 10 participants to understand how SpeeChin can distinguish between
phonemes and conducted a corresponding linguistic analysis.

• Based on the study results, we further discuss the opportunity and challenges of deploying SpeeChin in
real-world applications.

2 RELATED WORK
Silent Speech Recognition (SSR) has been an active research topic in the research community for decades. This
section discusses related works in two categories: 1) non-wearable-based SSR technologies or 2) wearable-based
SSR technologies.

Table 1. Summary of wearable-based SSR Techniques. UD: user-dependent, SD: session-dependent, UI: user-independent, SI:
session-independent, NM: not mentioned

Reference Sensing Sensor Wordlist Classification Session/user
method location size accuracy dependency

Sahni et al. [57] Magnet field Tongue and glasses 11 90.5% UD, SD
Hofe et al. [29] Magnet field Tongue and head 57 98.8% SD

TongueBoard [43] Capacitive Tongue 21 91.0% UD, SI
Schultz [58] sEMG Face 101 68.5% UI
AlterEgo [33] sEMG Face 10 92.0% UD, SD
SottoVoce [40] Ultrasonic Tightly attached to jaw 40 66.4% NM
TieLent [39] Camera Necklace 15 94% UD
C-Face [11] Two cameras Earphones 8 84.7% UD, SD

SpeeChin One camera Necklace 54 English 90.5% UD, SI44 Chinese 91.6%

2.1 Non-wearable-based SSR Technologies
Humans can read speech by looking at lip movement, also known as lip-reading. Sharing a similar spirit, the most
popular SSR techniques use a camera in front of the user’s face to capture images of lip and face movements to infer
the speech content. Prior works have demonstrated the ability to classify different lists of letters/words/phrases
[22, 24, 56, 62, 68, 75], recognize sentences [2, 13, 14, 31, 41, 64, 72], and reconstruct the sound of the speech
[1, 5, 15, 20, 48, 67] from these images. Recently, researchers also explored using a built-in camera[62] and acoustic
sensors[23, 74] on the smartphone to capture lip movement for SSR.
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Although these non-wearable-based SSR techniques have demonstrated promising performance, they require
placing the hardware (e.g., cameras, phones) in front of the user’s face, which may not always be socially appro-
priate or convenient. For instance, most previous work uses a camera on a laptop or placed in the environment to
capture the user’s face. Such systems limit the users’ movement and would not work when the environment does
not allow setting up a camera (e.g., when the user is in public). Although the user can wear the camera with a
chest mount or head-mount or hold it in hand, these settings can be inconvenient and socially inappropriate in
many scenarios. A more discreet and flexible SSR system is in need.

2.2 Wearable-based SSR Technologies
Wearables are worn directly on the user’s body. Thus, wearable-based systems usually offer more flexibility in
terms of range of movement and can work well when frontal cameras can not be set up in the environment.
Researchers have explored a variety of wearable-based SSR techniques by capturing the movement of different
articulators (e.g., skin, ear, tongue, lips, muscles) using different sensing methods.
To capture the movements of the muscles, tissue, or skin on the head, researchers developed SSR techniques

that placed EMG electrodes on the face [33, 34, 58, 70], the head [7], and/or the neck [47]. Other technologies
such as RF-based movement tracking [69] and MRI [54] have also been explored to analyse the facial movements
or vocal tract shape dynamics while the user is speaking.

Besidesmovement on the surface of the head, vocalizing speech also involvesmovements of different articulators
(e.g., mouth, tongue) inside the mouth. To capture the tongue and mouth movements for SSR, researchers placed
magnets on the tongue and head [4, 9, 29, 36, 37, 57], and capacitive sensors in the mouth [38, 43]. Tongue
movement can also be inferred by placing medical-purpose ultrasonic probes tightly under the chin for SSR
[16, 18, 32, 40, 66]. The latest research project C-Face [11] shows feasibility in distinguishing silent speech
commands by learning the change of facial contours using two ear-mounted cameras. However, it can only
recognize eight commands with an accuracy of around 85%. A recent project, TieLent[39] demonstrates the
feasibility to recognize 15 silent speech phrases with a necklace-mounted RGB camera, which was evaluated
with 4 participants in a controlled setting. It generates synthetic sound of the phrase first which is recognized by
the speech recognition engine. Furthermore, it is unclear how it would perform across different sessions (e.g.,
Remounting) with a larger vocabulary and more participants.
We summarized the closest wearable-based SSR technologies in Table 1. As the table shows, many of these

systems require wearing electrodes on the face [33, 40, 58] or putting sensors inside the mouth [29, 43, 57]. Most
of these systems are session-dependent, which do not work well after remounting the electrodes or sensors.
Although some have shown promising performance [43], heavy instrumentation on the tongue may not be
acceptable by many users in daily activities. Furthermore, technologies [11] that are considered non-obtrusive
can only recognize a small set of silent speech commands.

Compared to the previous wearable-based SSR technologies, SpeeChin is a minimally-obtrusive wearable-based
SSR technology using a smart necklace. It is the first to demonstrate the feasibility of using a neck camera to
capture neck and face images for recognizing silent speech commands. Furthermore, it is also the first SSR
technology that demonstrates promising session-independent SSR performance in multiple languages (Chinese
and English).

3 THEORY OF OPERATION
Although humans use nearly 7,000 distinct languages to communicate with each other across the world, the
anatomy for speech is the same: people make sounds using their lips, tongue, and facial muscles (jaw). Speech,
whether vocalized or not, requires the speaker to alter the shape of their chin, lips, cheeks, etc. from the perspective
of an outside vantage point.
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Fig. 2. Change in chin and face shape while uttering different phrases. First line: images captured by frontal camera, second
line: images captured by necklace camera

The traditional computer-vision based SSR approach directly captures lip movement using a camera in front of
the face. However, as we have discussed previously, placing cameras in front of the face is not always a feasible
option. Fortunately, each speaking gesture consists of a series of movements involving multiple articulators (e.g.,
lips, jaw, tongue) on the face. Capturing the movement of the mouth/lips may not always be convenient or even
necessary. However, observing the movements on other corresponding articulators of a speaking gesture may be
more convenient in some cases, while still being highly informative for speech recognition. For instance, the
latest research [11] has demonstrated using the contours of the face observed from the ears to estimate multiple
articulators’ movements, including the mouth, eyes, and eyebrows.

However, the main focus of C-Face [11] is not to recognize silent speech commands, and it could only recognize
eight commands with around 85% accuracy. We suspect one of the reasons C-Face does not perform well on SSR
is that it captures little information on the tongue’s movement, which is critical for performing silent speech.
To capture the movement of the tongue, previous research placed sensors inside the mouth, which would be

unacceptable for many users. However, based on our observations, we found that tongue movement inside the
mouth also leads to changes in the shape of the neck and lower face. Based on this observation, we hypothesize
that if the system can observe neck, chin, and lower facial movement, it can accurately distinguish between silent
speech commands.
We placed an IR camera below the chin to verify our hypothesis, by taking pictures of the neck and face. We

used this system to record changes in the shape of the neck and face while one researcher uttered various silent
speech commands. As shown in Figure 2, the shapes and images of the chin change as the commands change.
This initial observation was very encouraging, leading us to design SpeeChin, a smart necklace that recognizes
silent speech commands using images of the neck and face.

4 HARDWARE DESIGN
Based on the encouraging results from the preliminary experiment, we first implemented the hardware prototype
of SpeeChin, which is a camera module housed in a 3D printed necklace case. The necklace case is then hung
around the neck with a silver chain, as illustrated in Figure 1(a).

4.1 Infra-red Imaging System
In selecting a suitable camera type for SpeeChin, we first tried using a standard RGB camera. However, we
found it difficult to segment the user’s head from different backgrounds, as shown in Figure 3(a). However,
reliably segmenting the head from backgrounds is critical to the success of SpeeChin, as information is encoded
in the shapes of the neck, chin, and face. To better segment the background, we considered using a thermal
camera or a depth camera. Unfortunately, these state-of-art thermal cameras are too large to be considered
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Fig. 3. Comparison of images captured with different camera and filters. With 850nm filter and independent lighting, the
brightness between skin and background is different; with 650+850nm filter and independent lighting, both brightness and
color are different.

“minimally-obtrusive” or the image resolution is too low. We settled on an IR camera due to its convenient filter
system for background segmentation, small size, and relatively high image resolutions.
Our IR imaging system consists of lighting, optical filter modules, and an image sensor. The lighting module

has two customized PCBs, each equipped with a 3W 850nm IR LED (TY-850nm3W, light angle 120 degrees) to
project IR light on the skin from the neck. Near-infrared technology has been used in wrinkle and scar treatment
[63, 71] and proven to be safe [3, 6]. The power of our IR LEDs is less than 4mW/cm2, much lower than those
used for medical purposes.
The IR light reflected on the skin will be captured by the image sensor, an OV5647 module (320x240@60fps)

with a 130-degree FoV lens and adjustable focus. To make segmentation easier, we adopted a 650+850nm dual peak
narrow-band optical filter, which allows the 650 and 850nm components of the lights into the imaging system.
The skin are mostly reflected with 850nm component using our lighting system. The lights from background
contains a wide spectrum of light components, including both 850 and 650nm components. As a result, the color
and brightness of the skin in the image, which mostly contains 850nm components, looks visually very distinct
from the backgrounds which are mixed with 850 and 650nm components in lights, as seen in Figure 3. Thus,
it is very easy to segment the skin from the background based on brightness and color difference. A detailed
explanation of our segmentation method is specified in the section 5.1 and Figure 4.

4.2 Form Factor Design
We 3D printed a holder for the IR imaging system. In order to make it stable, we designed a wing on each side
and place a coin on the bottom, as Figure 1(a) shows. The imaging system is attached at the center of the holder.
A light-weight silver chain was used to hang the form factor around the user’s neck. The chain slides smoothly
through a hole in the case when the user rotates the head, minimizing device shifting.

5 DATA PROCESSING PIPELINE
The necklace camera images alter over time due to slight shifts in the device’s angle and positioning. Pre-
processing is therefore necessary to rectify this shifting by affine transformation. Moreover, clothes in the frame
or lights in the background may introduce noise. In the captured image, we are only interested in the human
body (“foreground”). Thus, we need to narrow down the most significant information within each frame and
eliminate noise before feeding the images into the SpeechNet machine learning model. We also need to provide
the start frame and the end frame for each utterance. In this section, we offer a detailed pipeline of our algorithm
implementation.
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5.1 Image Pre-processing
As shown in Figure 4, we first calculate the angle and center for performing affine transformation. We then use
differential images to enlarge changes by uttering silent commands and conducting transformation to align the
images. Lastly, we crop out the most significant part of the images. The parameters used in image pre-processing
were pre-determined based on the results in the preliminary pilot studies. To avoid over-fitting to the training
data collected in the user study, we did not change or fine-tune the parameters when evaluating the system on
the user study data.

Fig. 4. Pre-processing for images captured by SpeeChin camera

5.1.1 Parameter Calculation for Rectification. Firstly, we need to compute center and angle of rotation in order
to rectify the participant’s head movement. The first step is to segment out the skin (foreground) from the
background in the image. As we utilize a 650+850nm dual peak filter and 850nm LEDs, the foreground and the
background are clearly distinguishable by their brightness and color, as seen in Figure 4(a). We first apply Otsu
binarization [53] to identify foreground pixels, which corresponds to the user’s chin as shown in Figure 4(b).
Then, we remove bright spots or stripes in the background caused by artificial light with a color mask. More
specifically, we compute the histogram of the H channel with values ranging from 0 to 179 and find the peak
value in the histogram (excluding the peak at 0). This peak point represents the color with the largest proportion,
which belongs to the foreground. As a result, pixels with H value within -30 to +25 from the peak are considered
the foreground. Morphological operations are then applied to fill holes and remove small isolated components
to generate a brightness+color (BC) mask as shown in Figure 4(d). Since parts of the user’s clothing are often
included in corners and top of the frame, we crop out 80 pixels upwards from the foreground mask’s lowest
position. Finally, we locate the midpoint for each row of pixels in the foreground portion on the cropped BC mask
(centerline in Figure 4(f)). Then we regress the centerline with linear regression and set 𝑂1 as the intersection
point of the regressed centerline on the first row of the whole mask image. The angle ∠𝛼 is the angle between
the regressed centerline and vertical line, which indicates the relative rotation angle of the participant’s head.
Since the device position may shift over time due to body movement, we compute ∠𝛼 once for every chunk of
frames composing one utterance.

For each chunk of frames corresponding to one utterance, we select a single static frame before the user starts
or after the user finishes uttering the phrase to compute ∠𝛼 . The static frame refers to a frame at which the user’s
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mouth is not moving. It occurs when the user rests between uttering phrases. We select one static frame for
calculation rather than computing ∠𝛼 on each frame in order to avoid introducing noise in the time domain. Since
each utterance only lasts 1-2 seconds, the possibility of device shifting during this short time period is negligible.

5.1.2 Static Frame Selection. To get this static frame, for each chunk of images composing an utterance, we
first select a large window 𝐿𝑊 of about 160 frames (2.67s). 𝐿𝑊 ranges from 20 frames (about 33ms) before the
recorded start frame to 20 frames after the recorded end time. Secondly, we use a 19-frame sliding window𝑤𝑖𝑛

(𝑠𝑡𝑟𝑖𝑑𝑒 = 10 frames) over each 𝐿𝑊 . We resize the raw image to a smaller size of 64x48 pixels and stack the 19
frames in the𝑤𝑖𝑛 together. Thirdly, we calculate the variance on each pixel position in𝑤𝑖𝑛. The top 20 pixels
with the greatest variances are added up and recorded as the “static index” for this𝑤𝑖𝑛. The center frame of the
𝑤𝑖𝑛 with the smallest “static index” is regarded as the static frame.

5.1.3 Differentiation and Rectification of Images. The overarching goal of preprocessing is to improve the signal-
to-noise ratio (SNR) to help the model grasp principal features for silent speech command classification. In order
to enlarge subtle changes of facial movements in the image, we generate differential images by 𝐼𝑖 − 𝐼𝑖−2, where
𝐼𝑖 means the 𝑖th frame recorded. We use the B channel of the raw image when calculating difference. Next, we
rotate the differential image ∠𝛼 to rectify the head rotation, as shown in Figure 4(h)). As mentioned above, a
chunk of frames share the same ∠𝛼 . We rotate this chunk of frames by ∠𝛼 . At last, we crop the image with a
192x144 rectangle centered at the chin’s position on the image as illustrated in Figure 4(i), which are the final
images fed into the machine learning model.

5.2 Utterance Detection
In order to split commands and detect the starting and ending frames of each utterance from the image series, we
develop an utterance detection algorithm.

5.2.1 Vigorousity Measurement. Detecting the exact start time and end time is based on the degree of mouth
movement, which can be reflected by chin movement in the captured video. The vigorousity 𝑣𝑖 of such movement
in frame 𝑖 is measured by the standard deviation of all pixels in a smoothed second-order differential image. Let
𝐼𝑖 denote the 𝑖th frame in the dataset, 𝑣𝑖 is measured by

𝑣𝑖 = std( 1
3

1∑︁
𝑘=−1

𝐼𝑖+3+𝑘 +
1
3

1∑︁
𝑘=−1

𝐼𝑖−3+𝑘 −
2
3

1∑︁
𝑘=−1

𝐼𝑖+𝑘 )

The normalized vigorousity index 𝑣𝑛𝑖 is then obtained by averaging 𝑣𝑖 in 4 seconds to remove the influence of
potential vigorousity shift over time.

In this way, a vigorousity graph is generated as shown in Figure 5(a). 𝑣 will appear to have lower values when
the participant is not speaking.

5.2.2 Utterance Detection. In the generated vigorousity graph, speaking periods visually appear to have a higher
vigorousity (or a peak), while silent periods having lower vigorousity (or a valley), as demonstrated in Figure 5(a).
Based on this feature, we segment the speaking periods out before performing classification. We first find out all
“raw peaks” where 𝑣𝑛𝑖 ≥ 𝑣𝑡ℎ , then we merge consecutive “raw peaks” if they are less than 𝑡𝑚 from each other.
We then remove merged peaks that are shorter than 𝑡𝑤1 or longer than 𝑡𝑤2 based on the typical lengths of the
phrases. This process is illustrated in Figure 5(a). In practice, we set 𝑣𝑡ℎ = 0.92, 𝑡𝑚 = 0.83𝑠 (50 frames), 𝑡𝑤1 = 0.1𝑠
(6 frames), 𝑡𝑤2 = 2.17𝑠 (130 frames), based on the typical length of utterances during our user study.
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Fig. 5. Vigorousity index calculation for the utterance detection algorithm.

Fig. 6. Evaluation metric for utterance detection. TP: true positives, FP: false positives, FN: false negatives. When the center
of a detected segment falls within a recorded segment, it is counted as a TP. If more than one detected segment centers fall
within the same recorded segment, only one is counted as TP, other are counted as FP.

5.3 SpeechNet
The pre-processed images on segmented utterances are fed into an end-to-end deep learning model: SpeechNet,
for recognizing silent speech commands.

5.3.1 Model Selection. To recognize the silent speeches, we propose SpeechNet, an end-to-end CRNN model for
vision-based silent speech recognition. Our choice of model was made by comparing different models and the
characteristics of our dataset (spatial and temporal time-series). CNN has shown promising abilities in extracting
key spatial features from images [45] in recent years. Therefore, CNN is widely used in various vision tasks
including image classification [26, 42, 60], object detection [44] and image segmentation [49]. However, when
faced with variable-length sequential data, RNN often fits better by virtue of its flexibility and advantages in
extracting temporal features [73]. Combining the strengths of CNN and RNN, researchers have used CRNN
models in various vision-based temporal classification tasks including text recognition [59], human activity
recognition [46], video-based emotion recognition [21], and silent speech recognition [62]. Given our data set is
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image series with variable length, we decide to use CRNN as our model. However, what we provide in this paper
is a starting point. Further fine-tuning the model can potentially lead to even stronger performance.

5.3.2 Model Structure. The structure of the model is illustrated in Figure 7. The first block of SpeechNet is a
CNN module based on Residual Network (ResNet18) [25] as CNN has demonstrated strong ability in capturing
high-level features from images for various tasks in the computer vision field. Each convolutional block in
ResNet18 consists of a convolutional layer followed by a batch normalization (BN) [30] and rectified linear unit
(ReLU) layer. At the end of the CNN backbone, a global average pooling is applied. The output of Resnet18 is then
padded to a fixed size. Subsequently, we apply a Long Short-Term Memory (LSTM) block [28] due to its strength
in integrating time serialized information, which has been validated in the natural language processing field.
More specifically, we use a single layer, unidirectional LSTM with 128 hidden units, followed by a subsequent
dropout (probability=0.5) layer to avoid overfitting. A subsequent linear layer gives the final prediction for the
speech command in the end.

Fig. 7. Architecture of SpeechNet. 𝑘 represents that there are 𝑘 frames composing this command. 𝑣𝑖 represents the visual
feature of the 𝑖𝑡ℎ frame. Padding means that we pad variable-length sequences to form a fixed-size input.

5.3.3 Data Augmentation. To further improve the robustness of the model against spatial and temporal noises
with limited training data , we apply both temporal and spatial data augmentation. The former increases temporal
variance by splitting odd and even frames and randomly shifting the starting and ending frame. The latter
increases variance on images by applying random affine transformation.

• Temporal augmentation: The original frame rate from our experiment was 60 fps. We group frames with
odd frame numbers and even frame numbers to form two new 30 fps data samples, thus doubling the size
of our data. A pilot experiment showed that this approach has significantly improved the performance
across different settings. The position of starting and ending frame of each utterance is randomly shifted
within 10 frames from the detected position in order to increase temporal variance and compensate for
errors in utterance detection.

• Spatial augmentation: The position of the camera frequently shifts, which leads to displacements of the
images. To enrich the variance of the images without the need of collecting more data, we apply affine
transformation. When the training process fetch the set of images of a silent speech command from the
dataset, there is an 80% chance that the system would conduct affine transformation on images. If selected,
we apply the random affine transformation of translation (range from -20 to 20 pixels) , rotation (range
from −8◦ to +8◦), scaling (range from 0.9 to 1.1) of any combinations. This approach helps increase the
data diversity and avoid overfitting, making our deep model more resilient to spatial noise.

5.3.4 Training Process. We choose the cross-entropy loss as the loss function and Adam as the optimizer during
the training process. The learning rate is set to be 0.0001 at the beginning and decreases over time. The batch size
is set to 16. We train the model for 400 epochs.
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6 USER STUDY
To evaluate the performance of SpeeChin, we conducted two studies with 20 participants in total, both approved
by the Institutional Review Board (IRB) of our institution. The first study with 10 participants tested 54 English
silent speech commands, and the second study with another 10 participants tested 44 Chinese silent speech
commands. The purpose of the two studies was to explore how our system would function cross-linguistically.

6.1 Command Sets
6.1.1 English Commands Dataset. We selected 54 English utterances (listed in Table 2) composed of digits,
interactive commands, voice assistant commands, punctuation commands, and navigation commands. We chose
interactive commands such as ‘Answer’, ‘Call’, and ‘Camera’[74] as they are highly applicable for cell phone
use. We also selected frequently used voice assistant commands such as ‘OK Google’, ‘Hey Siri’, and ‘Alexa’. To
assist in typing or texting, we included ten punctuation commands. When users type using smartphones, they
are typically required to switch to the secondary keyboard to input punctuation. Silently uttering punctuation
commands instead could prove to be more convenient.

Table 2. Commands set: English command set with 54 frequently used phrases.

Category Commands
Digits Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine
Interactive Com-
mands

Answer, Call, Check, Copy, Cut, Hang up, Mute, Paste, Pause, Play, Redial, Screenshot,
Search, Skip, Share, Undo, Previous, Next, Open, Close, Volume, Keyboard, Camera, Home,
Help, Skype

Voice Assistant OK Google, Hey Siri, Alexa
Punctuation Question mark, Exclamation point, Comma, Dot, Semicolon, Colon, Quotation mark,

Parentheses, Dash, Slash, Underscore
Navigation Left, Right, Up, Down

6.1.2 Chinese Command Dataset. We also chose 44 commands in Standard Chinese (Mandarin) to test our
system’s performance cross-linguistically. Phonetically, Chinese is quite different from English, rendering it
a suitable test case. Based on our knowledge, this is the first wearable technology that evaluates the cross-
linguistically SSR performance.

The command set is derived from Lip-interact[62], which uses the smartphone’s camera to recognize Chinese
silent speech commands. It includes five categories: system, home screen, WeChat, Notepad, and pop-ups. As
depicted in Table 3, these commands were selected based on their applicability in various smartphone interactions.
The command set includes functionality commands related to two popular apps: WeChat1 and Notepad. With
SpeeChin implemented, users could potentially access in-app functions directly without navigating through a
hierarchical menu structure.

6.2 Apparatus
We used the SpeeChin necklace described in section 4 to collect facial movements from underneath the chin
while users silently uttered commands. As presented in Figure 8(a), the camera in the necklace was connected to
a Raspberry Pi through an FPC cable. The Raspberry Pi was connected to a monitor and a control button. The
screen was used to display a GUI for participants to follow during data collection. The control button was used

1https://www.wechat.com/en/
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Table 3. Commands set: Chinese commands set with 44 frequently used phrases. The PinYin (indicating pronunciation) and
meaning in English are explained after each command. Alipay, Taobao and Weibo are popular mobile apps in China.

Category Commands
System 返回 (FanHui, Back), 桌面 (ZhuoMian, Home), 截屏 (JiePing, Screenshot), WiFi, 静

音(Jingyin, Mute),手电筒(ShouDianTong, Flashlight),通知栏(TongZhiLan, Notification),
最近应用(ZuiJinYingYong, Recent Apps),蓝牙(LanYa, Bluetooth),锁屏(SuoPing, Lock)

Home Screen 打开微信(DaKaiWeiXin, Open WeChat),打开浏览器(DaKaiLiuLanQi, Open Browser),
打开相机(DaKaiXiangJi, Open Camera), 打开支付宝(DaKaiZhiFuBao, Open Alipay),
打开音乐(DaKaiYinYue, Open Music), 打开淘宝(DaKaiTaoBao, Open Taobao), 打开
邮箱(DaKaiYouXiang, Open Mailbox), 打开微博(DaKaiWeiBo, Open Weibo), 打开闹
钟(DaKaiNaoZhong, Open Alarm),打开记事本(DaKaiJiShiBen, Open Notepad)

WeChat 朋友圈(PengYouQuan, Moments), 搜索(SouSuo, Search), 添加(TianJia, Add), 发状
态(FaZhuangTai, Post), 扫码(SaoMao, Scan QR Code), 点赞(DianZan, Like), 更换头
像(GengHuanTouXiang, Change Profile),二维码(ErWeiMa, Show QR Code),发送(FaSong,
Send)

Notepad 复制(FuZhi, Copy),剪切(JianQie, Cut),粘贴(ZhanTie, Paste),撤销(CheXiao, Undo),重
做(ChongZuo, Redo),加粗(JiaCu, Bold),高亮(GaoLiang, Highlight),向左(XiangZuo, To
Left),向右(XiangYou, To Right)

Pop-ups 删除(ShanChu, Delete),查看(ChaKan, Check),接听(JieTing, Answer),挂断(GuaDuan,
Hang up),是(Shi, Yes),否(Fou, No)

to start, pause, or resume the data collection process. Lastly, we captured each participant’s face with a frontal
camera using a mobile phone to compare SpeeChin results with SSR using the images of the user’s face.

Fig. 8. Apparatus and user study setup. (a) Apparatus for user study. (b) User study setup

6.3 User Study Procedure
We recruited 10 participants for the English Silent Speech Commands study (𝑀𝑎𝑔𝑒 = 20.6; male = 3, female =
7) and 10 participants for the Chinese Silent Speech Commands study (𝑀𝑎𝑔𝑒 = 20.6; male = 8, female = 2). All
participants in the studies self-reported being fluent in English and Chinese Mandarin, respectively.

Both user studies shared the same overall procedure. The researcher first introduced the procedures and helped
participants set up the necklace and front-facing cameras. The participant was then handed a single button to
hold (shown in Figure 8(b)). The participant could decide when to start, pause, or resume a session to take breaks
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using the button. Once the study started, the researcher did not interrupt or provide any assistance until the end
of the experiment. The user study setup is shown in Figure 8(b).
Each study contained 9 sessions, including a short practice session at the beginning where the participant

repeated each phrase twice to get familiarized with the system. The following 8 sessions were used for train-
ing/testing, where each phrase was repeated 4 times every session in a random order. As the necklace would
likely be taken on and off frequently in real life scenarios, we asked the participants to remount the device by
themselves after each session. The participants were free to move around or take a break between sessions.

During each session, a random command would appear on the screen and remain for 2 seconds. The participant
was asked to mouth the utterances shown on the screen quietly without voicing a sound. Two progress bars
appeared on the screen: one tracked the current utterance progress (2 seconds), and the other tracked the current
session progress. The exact time that the command appeared and disappeared on the screen was recorded as
ground truth. The participant was instructed to remain relatively still and avoid activities such as touching the
face, coughing, swallowing, drinking water, or licking the lips, while uttering commands. However, they were
free to move and do these activities after pausing the system.

In order to ensure data quality, we only kept images with a frame rate of 60 ± 2.4 fps. In the event of mistakenly
speaking a wrong command, the participant was instructed to press the button to pause the system and then
resume it. If there was a disturbance in frame rate (out of range of 60 ± 2.4 fps) or the participant pressed the
button to pause, all images recorded for the current and previous utterances were discarded. The corresponding
utterances were then added to the end of the current session. In all the user studies combined, 820 out of 55470
utterances (1.48%) were discarded due to participant errors, and 250 (0.45%) were discarded due to a disturbance
in frame rate.

7 EVALUATION
In this section, we present the results of our user studies. We first evaluate our utterance detection algorithm. We
use precision, recall and F-1 score as the evaluation metrics. We then use accuracy as our evaluation metric for
silent speech phrases classification, which is defined as,

accuracy =
# utterances correctly detected and correctly classified

# utterances correctly detected
(1)

We evaluated our system using user-dependent (UD), user-independent (UI), and user-adaptive (UA) approaches.
Specifically, a UD model is trained and tested on the same participant, which means a user needs to provide
sufficient amount of training data before being able to use the system; a UI model is trained on some participants,
while tested on a different participant, which means a user does not need to provide any training data; a UA
model is training on some participants, and fine-tuned with data from the testing participant, which means
a user needs to provide a small amount of training data. For UD experiments, the first 6 sessions (excluding
the practice session) were used for training and the last two for testing. For UI experiments, we conducted
a leave-one-participant-out cross-validation. For UA experiments, we used the first 2 sessions (excluding the
practice session) to fine-tune the model trained in UI experiments, and evaluated on the last 2 sessions. Since we
asked participants to remount the device after every session, these results are all session-independent.

7.1 Utterance Detection
During the experiment, the phrase stimuli were presented every 2 seconds. This time window was marked as the
ground truth of utterances. We used the metrics specified in Figure 6(b) to calculate the precision, recall, and F-1
score of utterance detection.
Results show that the F1 score, precision and recall for all participants in the English study is 98.0% (ranging

from 94.7% to 99.3%, 𝑆𝐷 = 1.34%), 98.3% and 97.8%, respectively. In the Chinese study they are 98.1% (95.6% to
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99.4%, 𝑆𝐷 = 1.13%), 97.8%, and 98.4%, respectively. Results demonstrate that the utterance detection algorithm
remain highly stable across all participants.

7.2 English Study Silent Speech Recognition Results
We conducted a UD experiment on each participant. Results show that SpeeChin achieves an average accuracy
of 90.5% (SD = 4.86%) in classifying 54 English commands, ranging from 80.3% for P4 to 98.7% for P2, as shown
in Figure 9(a). The top five confused commands are: misclassifying “Dot” as “Cut” (11% of “Dot” misclassified
as “Cut”), “Copy” as “Comma” (9.9%), “Answer” as “Undo” (9.4%), “Home” as “Call” (6.9%), and “Comma” as
“Copy”(6.2%). Confused pairs often contain the same number of syllables and share similar families of sounds
(such as “Comma” and “Copy” confusing labial phonemes ’m’ and ’p’). We observed that glass frame might be
captured by our necklace camera, thus polluting the images. To make sure that wearing glasses will not have an
impact on system performance, we compared the results of participant with and without glasses. The average
accuracy of participants with glasses (P1, P3, P4, P5, P7, and P10) is 88.0%. One-way ANOVA test shows no
significant difference on accuracies between participants with or without glasses (F(1,8) = 3.55, p = 0.10).

7.3 Chinese Study Silent Speech Recognition Results
As for SpeeChin’s UD performance on distinguishing 44 Chinese commands, the average accuracy is 91.6%
(SD = 3.6%), ranging from 84.2% for P13 to 97.7% for P11, as shown in Figure 9(b). The top 5 confusions are,
misclassifying “添加(Add, TianJia)” as “点赞(Like, DianZan)” (12%), “桌面(Home, ZhuoMian)” as “锁屏(Lock,
SuoPing)” (12%), “锁屏(Lock, SuoPing)” as “桌面(Home, ZhuoMian)” (10%), “加粗(Bold, JiaCu)” as “删除(Delete,
ShanChu)” (6.9%), and “重做(Redo, ChongZuo)” as “搜索(Search, SouSuo)” (6.9%). We observed that 7 out of 10
participants wore glasses. Similarly, one-way ANOVA test shows no significant difference between participants
with and without glasses(F(1,8) = 1.53, p = 0.25).

(a) Results on 54 English commands (b) Results on 44 Chinese commands

Fig. 9. Results for all participants on 54 English phrases and 44 Chinese phrases

7.4 User-independent and User-adaptive Experiments
To further discuss the possibility of making our system user-independent, we conducted a leave-one-participant-
out (LOPO) experiment. Results are demonstrated in Figure 10. Classification accuracy on 54 English commands
across 10 participants ranges from 40.3% (P4) to 78.6% (P6), with an average accuracy of 54.4% and standard

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 192. Publication date: December 2021.



SpeeChin: A Smart Necklace for Silent Speech Recognition • 192:15

deviation of 12.0%. Classification accuracy on 44 Chinese commands across 10 participants ranges from 23.8%
(P19) to 85.5% (P11), with an average accuracy of 61.2% and standard deviation of 19.0%. The high variance across
different users indicates that user-independent performance is not very stable, but also demonstrates the potential
for future user-independence.

(a) User dependency experiment results for English study (b) User dependency experiment results for Chinese study

Fig. 10. User dependency experiment results

The unsatisfactory UI performance can be compensated by providing a small amount of data from the participant
to train a user-adaptive model. We first trained the user-independent model, then we used 2 sessions from the
testing participant to fine-tune the model by training 20 epochs. Results show that classification accuracy increases
significantly from 54.5% to 83.2% on 54 English commands and from 61.2% to 84.5% on 44 Chinese commands. We
also explored the relationship between the amount of data used for fine-tuning and classification performance
to see how much fine-tune data is needed. Using only 0.5 session (2 utterances for each command) of training
data, the accuracy increases by about 13-16% compared with UI models. Using more data to fine-tune generally
leads to better performance, as shown in Figure 11(a). This shows that while there is not enough data to train a
user-independent system, the user can provide a small amount of training data (1-2 sessions, 5-15min) and still
achieve decent performance.

To remove the possibility that UA model might be over-fitted to a specific participant, we also drew a learning
curve with different amount of training data in a UD approach. To achieve this, we gradually increased the
amount of sessions used for training from 0.5 to 6, while the testing data unchanged (the last two sessions). All
other training parameters are the same as in the UD experiment. To better understand the impact of the amount of
training data on different participants, we drew learning curves on participants with best and worst performance
from both user studies. We compared the UA and UD learning curves in Figure 11(b)(c). Results show accuracy
rises when the amount of training/fine-tuning data increases. Participants with better performance converge
faster. When training data is limited (<2 sessions), the UA approach achieves significantly better performance than
UD approach by about 7%-60%, showing that the UA approach is not strongly over-fitted to a certain participant.

8 DISCUSSION

8.1 Linguistic Analysis
Modern voiced speech recognition systems are usually able to recognize speech at a phoneme [12] or character
[8] level. The ideal silent speech recognition system would also need to distinguish between individual phonemes
in order to recognize a much larger set of words in the future. To test the limits of our system and gain a deeper
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(a) UA learning curve (b) UD/UA learning curve for English study (c) UD/UA learning curve for Chinese study

Fig. 11. Learning curves. Results acquired by changing the amount of sessions used for training (in UD curves) or fine-tuning
(in UA curves). In (a) results are calculated by averaging all participants in English and Chinese study, respectively. In (b)
and (c), results for participants with the best (P2 for English, P11 for Chinese) and worst (P4 for English, P13 for Chinese)
performance are compared.

understanding of its ability to distinguish between phonemes, we collected data from 10 participants (𝑀𝑎𝑔𝑒 =
20.7; male = 2, female = 8) asking them to silently utter a specially designed list of 72 one-syllable “nonwords”.
Each nonword in the list contained two phonemes: a consonant followed by a vowel. This included 18

consonants (p,b,m,f,v,w,r,sh,th,t,d,s,z,n,l,k,g,y) and 4 vowels (i,u,ei,oh) for a total of 72 nonwords. We excluded
consonant phonemes that are not allowed at the beginning of words in English such as “ng”. The participants
were given headphones for this study, which provided audio stimuli to aid with pronunciation. Each nonword
appeared on the screen for 1.5 seconds. Apart from the headphones and screen duration, the user study procedure
was identical to the procedure described in section 6.3.

We wrote a Python script that analyzed the confusion matrix data from all 10 participants to convert nonword-
level confusion into phoneme-level confusion between all consonant pairs and all vowel pairs separately. The
confusionmatrix in Figure 12 illustrates the average confusion rate for each phoneme pair across all 10 participants.
Figure 12 groups the phonemes by certain linguistic features. Namely, the phonemes are organized by their
“place of articulation” - a linguistic feature denoting the part of the mouth that constricts to make a particular
sound. The main phoneme groupings include labials (full lip closure), dental (lip or tongue touching teeth), lip
protrusion, tongue tip, and tongue body. Notice how Figure 12 forms confusion clusters around these groupings.
For comparison, were the phonemes to be grouped in a random order, they would show no such clusters around
the diagonal confusion line.
According to the confusion clusters, as we move backward from the lips towards the tongue body (down

the diagonal line), we see more variance in confusion across groupings. This makes sense since the lips are
visible from the POV of an outside camera, while the tongue is not. Still though, the apparent clusters suggest
that SpeeChin is able to distinguish between families of phonemes sharing particular linguistic features, even if
the articulators responsible for those phonemes are hidden from view. This shows promise for implementing a
phoneme-level camera-based SSR system in the future.
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Fig. 12. Phoneme-level confusion pair results grouped by shared linguistic features (A: labials, B: dentals, C: lip protrusion, D:
alveolar, E: sibilants, F: alveolar non-sibilants, G: tongue body, H: vowels)

8.2 Performance When the User Is in Motion
In order to evaluate the practicability of applying the system in a mobile setting (e.g., when users are walking),
we conducted a small scale mobile setting study. We recruited 6 participants (3 male, 3 female, average age 21.3).
We selected 10 Chinese phrases (接听 (answer, JieTing),挂断 (hang up, GuaDuan),查看 (check, ChaKan),扫码
(scan QR code, SaoMa), 打开音乐 (open music, DaKaiYinYue), 手电筒 (flashlight, ShouDianTong), 发送 (send,
FaSong),打开相机 (open camera, DaKaiXiangJi),是 (yes, Shi),否 (no, Fou)) and 10 English phrases (Answer, Call,
Redial, Play, Previous, Skip, Volume, Next, Up, Down) that can potentially be used while the users are walking.
The procedures of the study are the same as static settings study, except that participants were instructed to
walk around while they are speaking and that monitor was not used. Participant were asked to wear a bag on
the shoulder during the mobile study, in which we put a pair of speakers. The instructions were given as audio
through the speakers. In this way, the participants were free to look around instead of staring at a monitor. We
used this setup in order to mimic real-life walking scenarios better as well as ensuring safety.
Results show that classification accuracies for 10 English phrases and 10 Chinese phrases are 72.3% (ranging

from 40.6% to 91.9%, SD = 17.0%) and 65.5% (ranging from 34.4% to 91.2%, SD = 24.9%), respectively. There is
significant variance between different participants. This is because we did not limit the participants’ walking
style. Some participants rotated their head frequently while walking, while some remained relatively stable. It
appears that head movement plays an important role in the final results. However, this issue can potentially be
addressed with 1) improving the stability of the device by redesigning the form factor (e.g., the necklace can be
combined with a tie clip that can be attached to the clothes), 2) post-processing the images to remove the motion
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noise and align the body position, 3) collecting large-scale training data which covers various head movements,
and 4) introducing an activation gesture to activate the system. Although the overall accuracy drops significantly
compared with static studies, the high variance and good performance on certain participants (up to 91.9%) still
demonstrate the potential of making the system practical in mobile settings. We will further investigate this issue
in the future.

Most previous wearable-based silent speech recognition technologies were evaluated in a controlled lab-setting,
which can only recognize a much smaller set of phrases. TongueBoard [43] and SilentSpeller [38] are among
the few that include mobile evaluations. However, they are more obtrusive and less comfortable to wear than
SpeeChin. Compared to prior work, we have made significant progress on the wearable-based SSR performance
with a less-obtrusive form factor, which is designed towards a SSR technology that has the potential to be deployed
in the wild.

8.3 Performance under Specific Application Scenarios
Most applications do not need to distinguish all 54 English commands or all 44 Chinese commands. Depending
on the specific application scenario, a subset of the full command list may suffice. For example, texting digits and
punctuation on a cellphone can be tedious. For such a scenario, we can extract the 10 digits and 11 punctuation
commands from our English dataset and run a separate experiment. Results show that the average accuracy for
10 participants using just these 21 commands is 93.5% (higher than 90.5% with a full command list). Similarly,
we can consider a scenario using WeChat and select 10 phrases from the System Group and 9 phrases from the
WeChat Group as described in section 6.1.2. Classification accuracy on these 19 phrases is 94.8% (higher than
91.6% with a full command list). This shows that if applying SpeeChin on an application with smaller sets of
silent speech commands, its performance can be further improved.

8.4 Activating the SpeeChin System in Daily Scenarios
We envision SpeeChin will serve as a complementary and alternative input method in the future ecosystem of
miscellaneous computing devices, where traditional input methods may not best satisfy all the needs from the
user (e.g., privacy). In real-life use cases, the system will need to distinguish from intended interaction with the
device and various other daily activities, including speaking out loud. To save battery and avoid false-triggering,
SpeeChin can operate only when activated. An “activation phrase” that contains a special command (or series
of commands) can be selected. Activation phrases have been widely used in real-life interactive systems 2. For
example, “Hey Siri” is usually used to activate the voice assistant “Siri”. The activation phrase should 1) have
appropriate number of syllables, 2) be easy to memorize and pronounce, 3) be distinct from common daily
conversations. An example of such phrases is “Hi SpeeChin”. Specifically, the syllable “hi” involves significant
chin movement, which is relatively easy to be captured by SpeeChin. Since SpeeChin involves novel hardware,
it is also possible to define a special non-verbal “activation gesture”, e.g., waving at the camera or touching
certain areas of the device. Specifically, users sometimes speak out multiple commands in one utterance (e.g.,
Alexa, volume up, which contains 3 commands), or pause after the activation or between commands (but not long
enough to put the system to sleep). To allow for such freedom while using SpeeChin, our utterance detection
algorithm (based on scenarios where participants were asked to continuously mouth the phrases in sequences, as
described in Section 5.2) will find the exact period of time where the user is mouthing the commands. Further
processing and recognition will follow to generate the prediction.

2https://www.apple.com/siri/, https://assistant.google.com/
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8.5 Using Synthetic Data to Enlarge Training Set
Collecting training data from the user can be expensive and time-consuming in the real-world applications. To
address this issue, we plan to use a synthetic non-word method to extend the training set. This approach requires
a system to continuously generate 3D human head movements to simulate virtual environment lighting and place
virtual cameras on a necklace to collect synthesized data. A series of work in natural language processing and
computer vision have demonstrated the possibility of converting text/audio to 2D/3D videos [35, 52]. Specifically,
OpenFACS [17] allows generating real-time dynamic facial expressions; Audio2Face platform can generate
animated 3D human head movements from just audios [65]. With these studies, we believe it is possible to
synthesize datasets on sentence, word, and syllable levels to facilitate training in the future.

8.6 Power Consumption
Powering wearables is a long-standing challenge for wearable technology [61]. The prototype of SpeeChin
developed in this paper is intended to show the proof-of-concept, rather than immediately deploying the system
in the wild. To provide guidance for future optimization, we evaluated the power consumption of the current
prototype. Apart from the data processing pipeline which is run on a remote machine, the sensing system’s
total power consumption is 5.4W (1.48W for 2 LEDs, 0.92W for camera module, 3W for Raspberry Pi 4B). We
plan to further reduce the power consumption by using low power micro-controllers (e.g., ESP32 typically
consumes only 0.79W even with wireless module on3), using low-power cameras (e.g., OV9755 consumes 100mW
at 1280x720@60fps4), and reducing the duty cycle of the LEDs.

8.7 Privacy Concerns
Privacy is a concern with many wearable camera-based systems, as they can capture sensitive information in
different scenarios. Our device’s camera points straight up from the bottom of the neck. In most cases, it would
only capture parts of the ceiling or the sky in the background. Even if sensitive backgrounds were to be captured,
quality would still below due to our special lighting and filters. For instance, the environment in the background
are mostly dark unless there is an near-infrared (NIR) light source. Furthermore, the captured chin and face from
the neck arguably have less privacy information of the user compared to the images of the face captured by frontal
cameras. For these reasons, humans and background objects captured by SpeeChin camera are arguably less
privacy-sensitive than normal RGB cameras. In addition, we expect SpeeChin to be applied in an activate-to-use
manner, which means that the system does not need to be always on to avoid capturing sensitive information.
On the other hand, camera-based systems admittedly capture more environmental information than non-

camera wearable-based systems. However, SpeeChin is posed to have strong performance on SSR with the user’s
privacy in mind. In the future, we plan to further explore how to remove the privacy-related information from
the IR images and how and where to store the data (e.g., feature extraction on the fly).

8.8 Limitations
Apparently, SpeeChin also has limitations, just like every research prototype/innovation. This section discusses
some of the important limitations of the current prototype and possible solutions for the future.

8.8.1 Influence of Strong Sunlight. One limitation of the current system is that segmenting human skin from the
backgrounds can be challenging if the camera is directly exposed to strong sunlight in outdoor environments.
Figure 13 (b) shows the image captured if there is strong sunlight. To address this issue, there are two possible
solutions. One is to train a dedicated machine learning model which segment the skin from the backgrounds in

33.3V, 240mA, https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
4https://www.ovt.com/sensors/OV9755
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Fig. 13. Influence of strong sunlight

the image. The other solution is to fine-tune the optical sensing system. For instance, a commodity IR camera
(Leap Motion 5) could be worn on the neck and data can also be collected in strong sunlight, outdoor environment.
As shown in Figure 13 (c), the skin is visually distinct from the backgrounds. It shows that using more dedicated
filters and cameras can potentially address this issue. A recent work with a similar setup that tested Leap Motion
under strong sunlight conditions also demonstrates that performance can be significantly improved compared to
IR cameras [10].

8.8.2 Influence of Clothes and Hair. Another apparent limitation of the system is that the camera can not be
blocked. As a result, if the user has long hair that may cover the lens or a cloth that block or pushing the camera,
the system would not perform well.

8.8.3 Influence of Fluency Level of the Participants. In the user study of SpeeChin, 10 participants were recruited
for each language. All participants self-reported as fluent in the language used in their experiment. Specifically,
all participants in the Chinese study were native Chinese speakers while all participants in the English study
were not native English speakers. We acknowledge that this can introduce a bias in the results. If the participants
were not native speakers, it could impact the results, both negatively and positively. Non-native speaker can
potentially speak slower than the native speaker, which can positively impact the results. On the other hand,
non-native speakers also face more challenges pronouncing certain words, which makes it more challenging to
be distinguished. Native speakers tend to speak more consistently. We will leave this part to the future when
more data is available.

9 CONCLUSION
In this paper, we present SpeeChin, the first smart necklace that can recognize 54 English and 44 Chinese silent
speech commands from images of the neck and face captured by a necklace-mounted IR camera. These images
are sent to a customized pre-processing pipeline and an end-to-end CRNN model to infer silent speech commands.
A user study with 20 participants shows that SpeeChin can recognize 54 English and 44 Chinese commands with
accuracies of 90.5% and 91.6%, respectively. A third study with 10 participants was conducted to analyze how
SpeeChin would distinguish between different phonemes. Based on the above results, we discuss the opportunities
and challenges in applying SpeeChin in real-world applications in the future.
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