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ABSTRACT
The touchscreen has been the dominant input surface for
smartphones and smartwatches. However, its small size com-
pared to a phone limits the richness of the input gestures that
can be supported. We present TapSkin, an interaction tech-
nique that recognizes up to 11 distinct tap gestures on the
skin around the watch using only the inertial sensors and mi-
crophone on a commodity smartwatch. An evaluation with
12 participants shows our system can provide classification
accuracies from 90.69% to 97.32% in three gesture families
– number pad, d-pad, and corner taps. We discuss the oppor-
tunities and remaining challenges for widespread use of this
technique to increase input richness on a smartwatch without
requiring further on-body instrumentation.
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INTRODUCTION
Most wearable devices such as the smartwatch, by necessity,
are relatively small compared to traditional computing de-
vices (e.g., laptop, smartphone). Input technologies for tradi-
tional computing devices cannot be easily replicated on wear-
able devices because of its size and form factor disparity. For
instance, wearing an additional keyboard, even an optimized
one [17], is inconvenient for most users and may limit the
functionality of the hand. Therefore, providing an input tech-
nique for wearable devices that is both lightweight and always
available is of much interest to the HCI community.

As a modern representative of wearable devices, the smart-
watch uses a built-in capacitive multitouch screen as the sur-
face for both input and output. Unfortunately, the relatively
small size of the screen limits the richness of interactions.
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Figure 1. The TapSkin interaction technique. Drawings on the skin are
only for clarity to indicate where input events can be performed.

Many successful interactions on smartphones cannot be re-
produced on smartwatches, such as multitouch gestures. Fur-
thermore, these interaction issues, such as a large finger oc-
cluding parts of the screen, may seem insignificant on a
smartphone, but are exaggerated on a smartwatch.

These issues motivate us to look at the area surrounding the
smartwatch, specifically the skin on the back of the hand, as a
potential input surface. By extending the input outward to the
skin, the user can view the screen while interacting, similar
to the indirect interaction provided by a trackpad on a lap-
top. Although approaching the skin as the input surface has
been previously explored [12, 29], those approaches have ex-
ploited additional instrumentation of the body to achieve the
interaction. We demonstrate providing a rich set of tapping
gestures that work with the current sensing capabilities of a
smartwatch, specifically its microphone and inertial sensors.

We present TapSkin, a novel interaction technique that pro-
vides a family of tap gestures (up to 11 tap locations) on the
skin around the wrist area without additional instrumentation,
by only using the inertial measurement unit (IMU) and the
microphone on a commodity smartwatch. Our approach of-
fers a more practical solution for detecting on-skin tap ges-
tures for a wrist-mounted device.

We provide the following contributions in this paper:

• The design and implementation of a family of tap gestures
on the skin around the wrist area with the IMU and micro-
phone on a smartwatch.
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• An evaluation of the tapping gestures with 12 participants
in a lab-based environment.

• User-dependent, independent, and user adaptive models
are built to evaluate the challenges of personalizing on-skin
gesture models for different participants.

• An extensive discussion of the challenges for the future
practical deployment of this technique.

RELATED WORK
Though smartwatch and wearable devices have only started
becoming popular in the past few years, providing interac-
tions for portable computers has been explored by the com-
munity for many years. Therefore, we will first review the rel-
evant work on smartphones and then discuss research about
novel interactions on the wearable devices and smartphones.
We conclude by examining past work that has used the skin
as an input surface.

Interaction for smart phones
Compared with the traditional computers (e.g., desktops or
laptops), the smartphone has a relatively small screen and is
usually in the possession of its owner. Therefore, they share
many similar interaction design challenges with the smart-
watch.

Starting in the early 2000’s, researchers have explored ex-
tending interactions on smartphones [13]. Some of the re-
search focused on extending the input experience on the
touchscreen by designing new gestures [26], improving the
touch input accuracy [4], and detecting touch pressure [9].
Other researchers extended the interactions beyond the touch-
screen, by providing novel motion gestures [27], or recogniz-
ing gestures on the back or the side of the case [2, 19, ?].

Interaction for wearable devices
Early explorations of input for wearable computing used an
additional wearable device with physical buttons to provide
text input (e.g., Twiddler [18]). These methods were able
to provide reliable and fast input with training. More recent
work has explored instrumenting different parts of the body,
such as the fingers [5, 21, 34] or the arm [6, 12, 28] to pro-
vide a more limited input vocabulary, typically a small set of
discrete gestures. However, all these works require the user to
wear an additional device on the body, which is inconvenient
and impractical for always-on devices such as smartwatches.

Interaction for smartwatches
As wrist-mounted devices (e.g., health activity monitors and
smartwatches) dominate the wearable device market, more
interest has been raised on improving the interactions with
them, especially the input on the smartwatch. The approaches
used have varied from increasing the size of the touchscreen
by adding additional screens around the wrist [16], to using
an active stylus which allows finer manipulation than the fin-
gers [31], or designing specific finger/hand gestures [3, 33,
30, 23].

Different parts of the watch have also been appropriated for
interaction to provide a richer input vocabulary. Perrault [24]

and Funk [8] turned the watch band into an input surface for
gestures and text input. Nenya [1] used a magnetic ring to
provide gestures for the smartwatch by detecting a chang-
ing magnetic field. Xiao [32] showed the feasibility of us-
ing the screen as a joystick to provide more input events.
WatchOut [36] extends the interaction to the case and band
of the watch with only IMU sensors.

The input space for a smartwatch can also be extended by
considering the larger area around the watch. Kim et al.[14]
demonstrated a gesture watch using an array of IR proximity
sensors to detect intuitive and gross hand gestures above the
watch face.

Approaching the skin as the input surface
Though not demonstrated in the context of wrist-worn de-
vice interaction, Harrison et al.’s demonstration of Omni-
Touch [11] showed how depth sensing can be used to enhance
interaction around the hand and wrist, and specifically using
the skin as the interaction surface. Indeed, a person’s skin
is a good alternative input surface for wearable devices[29],
because of its proximity to the smartwatch.

Obviously, defining the skin as the input surface has great
potential in the space of gesture design. To recognize ges-
tures on the skin, a variety of sensing modalities have been
explored, including capacitance [25], vision [11], muscle ac-
tivation via electromyography [28], infrared proximity sen-
sors [15], motion/inertial and force [6], electricity[37] as well
as sound [7, 12, 20, 22].

These solutions all require the user to wear additional device
to accommodate the input technique, which is not ideal. Our
solution, TapSkin, will demonstrate the feasibility of using a
combination of sensors already in a smartwatch and a smart-
phone to detect a family of on-skin gestures, providing a more
practical solution.

DESIGN AND IMPLEMENTATION OF TAPSKIN
TapSkin is demonstrated on commodity smarwatches (Sony
SmartWatch3, Moto 360) using available sensor data from the
gyroscope, accelerometer, and microphone. A Google Nexus
6 phone is used to running the recognition algorithm. We first
explain the intuition behind moving from skin taps to recog-
nized gestures in TapSkin. Then, we discuss the design of our
TapSkin gesture sets. Lastly, we present details of the gesture
recognition implementation we used for our validation exper-
iments.

Theory of Operation
When touching the skin around the wrist, sound propagates
from the point of contact towards the microphone in the
smartwatch. We observed that the sounds of tapping on dif-
ferent locations of the hand are distinguishable from each
other. As Figure 2 shows, tapping on the number 3 (depicted
as N3 on the top right of Figure 2 and shown in Figure 1)
would have more energy at higher frequencies compared with
the tapping event on the number 1 (depicted as N1 on the top
left of Figure 2 and shown in Figure 1). This is because the
thickness of the tissue, the ratio of fat, and the structure of the
bone underneath are all different at different locations along
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the back of the hand and along the top of the forearm. For
instance, the position of number 3 is closer to the knuckle,
which has more bone underneath. Therefore, the sound of a
tap at that position has more energy at lower frequencies.

In addition, the act of tapping will induce a movement of the
arm that the smartwatch is mounted on. As Figure 3 shows,
tapping on different locations on the back of the hand, would
introduce different kinds of movement. For instance, tapping
on the number 7 and 9 (graphs N7 and N9 in Figure 3) would
first have a positive peak on the x-axis of the gyroscope and
then a negative peak, while tapping on the number 1 and 3
(graphs N1 and N3 in Figure 3) would first generate the neg-
ative peak along the y-axis and then a positive peak.

N1 N3

N7 N9

Figure 2. Comparing the acoustic response of taps at different location
around the smartwatch.

N1 N3

N7 N9

Figure 3. Comparing gyroscope sensor response of taps at different lo-
cations around the smartwatch.

These visually apparent differences across the various sensing
modalities strongly suggest that with appropriate data acqui-

sition and analysis, we should be able to distinguish different
locations of a tap on the skin around the smartwatch. There-
fore, we choose to use the gyroscope and accelerometer to
characterize arm displacement and the microphone to record
the acoustic response of the tap.

Gesture Design and Applications
With this intuitive and theoretical motivation, we first con-
sider three sets of tapping gestures that can map into useful
input: the NumPad, the DPad, and the CornerPad. Figure 4
depicts these three gesture sets. For each set, there is also a
single tap on the top of the forearm beyond the smartwatch
(depicted as a gray rectangular patch).

Figure 4. The TapSkin gesture sets: NumPad (top), DPad (bottom left),
and CornerPad (bottom right).

NumPad
The NumPad gesture family simulates the layout of a number
pad, which provides 10 distinct tap locations on the back of
the hand and one tap location to the left side of the watch (as
seen in Figure 4). It can potentially be used for entering num-
bers or even text (through multi-tap or T9), which is currently
difficult on a small touch screen. The tap gesture on the left
of the watch (TapLeft) is designed for two purposes: one is
to serve as the activation gesture, informing our recognizer
when it should pay attention for skin gesture input. The other
is to undo the last gesture, such that the user can revise their
input.

DPad
As Figure 4 shows, DPad contains the TapLeft gesture as well
as four tap gestures located at the top, bottom, left, and right
parts of the back of the hand. It can be used for directional
controls or scrolling through a list of items on the smartwatch.
For instance, the most common operation on a smartwatch
touchscreen is to scroll down the menu vertically and hori-
zontally. This operation can be naturally mapped to the four
tap gestures using DPad. The TapLeft gesture is used for ac-
tivation as well as for confirming the selection of a menu item
or application.

This main advantage of the TapSkin DPad will be seen with
applications that display a lot of information. DPad will re-
duce occlusion while still providing an intuitive means of in-
teraction.
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CornerPad
The CornerPad includes the four corners on the back of the
hand. The two gestures on the left are close to the wrist joint,
and the other two gestures on the right are close to the knuck-
les at the base of two fingers. These four distinct tap gestures
can be used as shortcuts to certain applications on a smart-
watch. The TapLeft gesture again serves as the activation
gesture into CornerPad.

Gesture Recognition
We apply a traditional machine learning pipeline to recognize
the gestures, which consists of two steps: gesture event detec-
tion and gesture classification. To identify events, we first ap-
ply a sliding window of 1.2 seconds with 75% overlap on the
synchronized data streams of the gyroscope, accelerometer,
and the microphone. Within each window, we detect whether
there is a gesture event. If a gesture is detected, we pass the
event window for feature extraction, which is then passed to a
Support Vector Machine (SVM) to classify the gesture events.
We use the sequential minimal optimization (SMO) of SVM
provided by Weka for building our training models and for
real-time classification in our prototype system [10].

Event Detection
To detect whether there is a gesture event in each 1.2 second
sliding window, we inspect the window to determine if either
the gyroscope or accelerometry data passes an empirically-
determined threshold value based on the maximum energy in
the window. If one of the thresholds is satisfied, we continue
to the next step in the pipeline to define an event window.

Within the original sliding window used for event detection,
we locate the position of the maximum absolute value of each
sensor signal. Note that the max points may be at different
times for each sensor. We then define an event window of data
values for each sensor stream balanced around that maximum
point. The size of event window is 0.5 seconds both IMU
data (accelerometer and gyroscope) and acoustic data. If the
maximum point is too close to the edge of the original sliding
window, we advance into the previous or next sliding window.
We now assume there is a gesture within that event window,
so the raw data is passed along for feature selection.

Feature extraction
For each event window, we calculate a vector with 286 fea-
tures.

For each axis of the linear acceleration and the gyroscope
data, we first derived virtual sensors by taking the derivative
of each axis. Then for each axis of the raw sensor and vir-
tual sensors, we extracted a set of statistical features includ-
ing the maximum, minimum, mean, median, standard devi-
ation, root-mean-square(RMS), variance, zero-crossing rate,
and the values of peaks and their differences. To capture the
relationship between the different axes of each IMU sensor,
we also calculate the ratio and differences of the energy, first
and second absolute peak values of each two axes on each
sensor. We also perform a Fast Fourier Transform (FFT) on
the gyroscope data (50 points), which results in 24 features
(abandoned the first bin) for each axis. Since the frequency
of our gesture is under 6kHz, we only add the values of first

three bins of the FFT results and the entropy across the values
of different bins into a feature vector.

For the acoustic data, we extracted features in the frequency
domain. We divided the window into 30ms frames with 50%
overlap. We first extract 26 Mel-frequency cepstral coeffi-
cients (MFCC) features, based on the observation that the
sounds generated by these on-skin gestures are mostly un-
der 4kHz, which is similar to the range of the human voice.
For each frame of data, we also calculate the FFT and aver-
age the results across different frames. We only keep the first
30 values of the FFT results, which represent the magnitude
of frequencies between 0Hz to 500Hz, which we determined
empirically as the most informative frequency band for the
sound of our gestures. The center of mass across the frequen-
cies is also added to the feature vector.

The feature vector is used to train a support vector machine
to recognize which gesture has been performed.

EVALUATION
We conducted a user study to understand how our technique
would work across different people and how we could build
optimal machine learning models for each gesture set. We
collect gesture examples first and apply offline analysis to
build our models. We evaluate the system offline instead of
using a real-time prototype. By collecting gesture examples
first and performing an offline analysis, we can better explore
the classification problem. At present, there is a practical lim-
itation for running the data processing pipeline in real-time on
the watch, so we offload that computational task to a paired
smartphone. Therefore, the sensor data needs to be trans-
mitted from the watch to the phone. However, continuously
transmitting acoustic data via Bluetooth in real-time is limited
by the bandwidth between the mobile phone and smartwatch.
The data transmission would introduce a non-negligible la-
tency while the system is running the real-time. This is the
current limitation of the system implementation. However, as
the processing power of the smartwatches are expected to in-
crease over time, we would expect the whole system to run
exclusively on the watch in the near future.

Apparatus
We evaluated our technology on a Sony SmartWatch 3 (An-
droid Wear) for data collection and a Nexus 6 (Android 5.1)
for running our machine learning algorithm. We specify the
highest sampling rate available for the gyroscope (200Hz)
and the linear acceleration (250Hz), but we intentionally
lower the sampling rate for the microphone to 8kHz, as the
sound generated by the tap event on the skin is mostly under
4kHz, and the lower sampling rate reduces power consump-
tion. The lower sampling rate also minimizes the data trans-
mission time between the watch and the phone, reducing the
latency for eventual real-time classification results.

Study Design
To evaluate TapSkin, we recruited 12 participants (6 male)
from our university campus with an average age of 26 years.

The study was conducted in an open space at a university
building, where the sound from the air conditioner as well
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Figure 5. The classification accuracy for each participant

as people’s talking and movement can be heard. Each partici-
pant was asked to complete surveys before and after the study
gauging their experience. At the beginning of the study, we
asked the participants to wear the watch on the left wrist and
use the right hand to perform the gesture. We advised them to
wear the watch closer to the hand and adjust the band tightly
but comfortably on the wrist. For consistency and helping
participants remember the locations of each tap gesture, a
number pad as seen in figure 1 was drawn on the back of
each participant’s hand.

A researcher then demonstrated the entire gesture set and
asked the participant to practice. The formal study consisted
of 8 sessions. During each session, the participant performed
all the gestures while sitting in front of a table, where they
could rest their elbow during the study. The participants were
asked to take breaks for a few minutes between sessions to
reduce fatigue. During these breaks, they could walk around
or take the watch off if desired. The whole study lasted ap-
proximately 45 minutes on average.

During each session, they were asked to follow the stimuli
displayed on the screen of the watch to perform the NumPad
gestures. DPad and CornerPad are a subset of the NumPad
gesture family. The sequence of the stimuli was randomized.
Five instances of each gesture were collected per session, and
11*5 = 55 total gesture events were collected per session.
Each gesture event was saved into 2-second raw data files for
further analysis. In total, we collected 5*11*8 = 440 gesture
instances from each of the 12 participants. We recorded video
of the sessions for later analysis.

Results
We first removed instances where the researcher observed the
participant tapping at the wrong position or missing the event.
Only the remaining gesture instances were used for the offline
analysis. As a result, we collected 5264 gesture instances
from 12 users in total.

During the study, each participant provided gesture instances
through 8 separate sessions. To understand how the system
works when the training data came from different sessions,
we applied a ”leave-one-session-out” method to evaluate the
system. For each participant, we iteratively used the instances
from one session as the testing data, while using the instances
from the rest seven sessions as the training data to build the

model.This step was repeated eight times for each participant
and we reported the overall results.

Gesture Event Detection Results
In our data processing pipeline, the first step is to detect the
gesture event. If we failed to detect any gesture event in any
sliding window in the offline files representing a gesture in-
stance, we counted this instance as a false-negative error. If
we detected more than one gesture event representing a ges-
ture instance in the files’ sliding windows, we counted these
instances as false-positive errors. We did not run these in-
stances with errors through gesture classification. As a result,
9 false-positive errors and 162 false-negative errors were de-
tected out of 5264 gesture instances (NumPad). The false
positive rate are 0.17%, 0.17%, 0.21%, and the false nega-
tive rate are 3.08%, 2.68%, 2.84% respectively for NumPad,
DPad and CornerPad.

NumPad Classification Results
The average accuracy across 12 users for NumPad in the
leave-one-session-out evaluation is 90.69%. The accuracy
for each participant is shown in Figure 5. Participant 9
(P9) provided the gesture instances with the highest accuracy
(95.14%) and P4 provided the instances resulting in the low-
est accuracy at 82.09%. We reviewed the video from P4’s
data collection session and found that the way the participant
performed the tap gesture was apparently lighter than others.
We further examined the data and discovered that the micro-
phone barely captured the sound of some gesture events, re-
sulting in the lower reported accuracy. We present the confu-
sion matrix of NumPad in Figure 6.

The lowest precision of 85.62% was provided by N8. Most
of the confusion exists between adjacent tap locations. For
instance, 3.05% and 7.19% of the instances of N8 were mis-
classified as N7 and N9. The N0 and LeftTap are the most
accurate gestures at 97.15% and 96.55%, respectively. We
believe this is due to the fact that the position of these two
gestures are distinct from others on the back of the hand. The
closer the two tap locations are, the more similar displace-
ment patterns are during the tap captured on the wrist.

DPad Classification Results
The DPad gesture family is a subset of NumPad gestures. The
four tap gesture is mapped to the N2, N4, N6, and N8 in the
NumPad gesture set. The layout of the these four tap locations
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Figure 6. Confusion Matrix for NumPad

is similar to a control pad, which can be used to navigate in
the up, down, left and right directions.

The average accuracy for DPad across 12 participants is
97.33%. P4 and P5 provided the gestures with the lowest
accuracy (91.28%) and highest accuracy(98.99%), respec-
tively. As the confusion matrix in Figure 7 shows, TapLeft
has the highest accuracy 97.84% and N4 offered the lowest at
96.75%.

Figure 7. Confusion Matrix for DPad

CornerPad Classification Results
The layout of the CornerPad gestures is mapped to the four
corners on the back of the hand. By locations, they are
mapped to the N1, N3, N7, and N9 gesture of the NumPad
set. The average accuracy across 12 participants is 96.64%.
The gesture instances from P3 achieved the highest accuracy
of 99.48%. P4 offered the gesture instances with the lowest
accuracies of 91.32% in the cross evaluation.

The confusion matrix of the CornerPad is shown in Figure
8. The most accurate gesture is N9 with an accuracy of
98.52% and the least accurate gesture is N7 with an accu-
racy of 94.36%. Interestingly, we noticed the TapLeft gesture
was mostly confused with N1 and N7, which are the closest
tap locations to TapLeft in the CornerPad.

Figure 8. Confusion Matrix for CornerPad

DISCUSSION

Evaluation with more practical models
The results of leave-one-session-out validation provide a
good estimate of how well the classifier performs on recog-
nizing different gestures across different sessions. However,

Figure 9. Accuracy of different number of training instances for user-
dependent models

in practice, building a real-time gesture recognition model
would face more challenges, such as how many training in-
stances are needed to build a model for a person, whether
the model can be built for user-independent operation, and
how many calibration instances would be necessary to im-
prove the classification accuracy. To answer these questions,
we conducted another set of experiments by building user-
dependent, user-independent(leave-one-participant-out), and
user-adaptive models. Similarly, we simulate the real-time
classification pipeline by applying a sliding window of 1.2
seconds with 75% overlap for all the files we collected in all
the models we built in this section.

User-Dependent Models
User-dependent models only use the data from the same par-
ticipant to train a model which will be then used for classify-
ing his/her own gestures. Usually, a model trained with more
training instances provide higher recognition accuracies, but
also require longer time to collect the data from the partici-
pant, which can be annoying. Therefore, to investigate how
many instances are needed to train a user-dependent model,
we built user-dependent models for each participant by us-
ing the first 5, 10, 15, and 20 collected instances per gesture
from that same participant to train an SVM model. We used
the remaining instances of that participant to test the model.
Evaluating TapSkin with user-dependent models across the
data collected in different sessions would be similar to how
the system would work in practice. A user provides the data

18



in the first few sessions, which will be used to build mod-
els evaluated in the later sessions. The results are shown in
Figure 9. When only using 5 instances to build a model, the
overall accuracy for NumPad, DPad and CornerPad across 12
participants were 70.97%, 88.69% and 86.3%. The highest
accuracies were 87.33%, 97.09%, and 95.23% respectively
for NumPad, DPad and CornerPad, when we trained the user-
dependent models with 20 instances per gesture for each par-
ticipant.

User-Independent and User-Adaptive Models
Compared with user-dependent models, user-independent
models(Leave-one-user-out) do not require the user to pro-
vide any training data before using the technique. It would
improve the user experience by reducing the workload on the
side of the user, but it places a higher standard for the relia-
bility of the gesture models.

Figure 10. Accuracies of User-independent and user-adaptive Models.
Along the x-axis, a value of 0 instances is the same as a user-independent
model.

We used the data of 11 participants from the total 12 partici-
pants to train a support vector machine, which is then tested
with data from the remaining participant. The average accu-
racy across 12 participants for the NumPad, DPad and Cor-
nerPad are 68.65%, 84.78% and 90.35% as shown in Figure
10.

The user-adaptive model falls in between the user-
independent and user-dependent models, considering the
amount of effort required for each user to provide training
instances. It strengthens the user-independent models by
adding a few number of instances per gesture from an individ-
ual user as demonstrated by [35]. We evaluated our technique
on user-adaptive models by incrementally adding 5, 10, 15,
and 20 instances per gesture from each participant to the user-
independent training set. As Figure 10 shows, the more per-
sonalization data is added to the models, the higher the aver-
age accuracies are. The highest accuracies are reached when
20 instances are added to the models, which are 81.13%,
92.64%, and 95.66% for NumPad, DPad and CornerPad.

We notice that the accuracies of user-adaptive models with 20
instances per gesture are lower than the accuracies of user-
dependent models built with similar number of training in-
stances. We believe this is due to tap locations being dif-

ferent from person to person based on different hand sizes.
For example, tapping at the same location of the hand (e.g.,
knuckle) can generate a different sound from person to per-
son. Therefore, adding more training data from others may
not necessarily help improve the recognition accuracy.

However, the user-independent model may work for a smaller
set of gestures. CornerPad achieved 90.35% accuracy with
user-independent models. With 5 and 10 instances added, the
accuracy further increased to 93.32% and 94.72%. We be-
lieve it is because the distances between the tapping locations
in CornerPad are longest, which potentially provides more
distinguishable characteristics in different gestures. A prac-
tical approach is to ask the user to test each gesture before
using it and only provide a few calibration gestures for those
gestures that may be misclassified.

Addressing the false-positive and negative errors
One important practical challenge for this gesture recognition
technique for wearable devices is how it works when being
deployed in a real device which is worn by the user all day
long. In real scenarios, this may trigger false-positive (FP)
and false-negative (FN) errors, which is critical to the per-
ceived user experience.

Therefore, we conducted a more detailed analysis into these
errors. In the above experiment, our system triggered 9
(0.17%) FP and 162 (3.08%) FN errors out of 5264 gesture
instances. We first looked into the 162 FN errors. We found
only 13 of the FN errors were caused by not passing the pre-
defined thresholds.The rest 149 FN errors were introduced
by not being able to capture the whole 0.5 feature extraction
window after the peak localization. After reviewing the video
and the sensor data, we found three reasons.

The first one is that if the participant (E.g. P4) made weak
taps, the peak localization may not capture the peak as ex-
pected. The second reason is that the participant performed
the gestures either too early or too late, such that only part of
the gesture fell into the 2-second window which were saved
into sensor files. The third reason is that the audio data was
not synchronized with IMU data while saving to files, which
introduces a misalignment on the time-stamp. As a result,
one of the sensor (mostly the audio) files failed to capture the
whole gesture. This happens more when the watch is over
heated after performing the heavy computing workload for a
certain period of time. As the watches become more powerful
in the future, it is reasonable to expect that the last two kinds
of FN errors can be reduced by running the whole system on-
line exclusively on the watch.

Although our system only triggered 9 FP errors, avoiding the
FP errors is still quite a challenging task. On one hand, the
results caused by FP errors can be very frustrating to a user.
For instance, if TapSkin is used to control the dial pad, FP
errors may result in unwanted phone calls when the user even
does not notice it at all. On the other hand, all the gesture
instances were captured in a daily office area in a static pos-
ture(sitting), where only gentle noise (e.g. talking, walking,
air conditioning) existed compared with outdoor noise. To ad-
dress this FP issue in real scenarios, one way is to apply more
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advanced signal processing technique (e.g. band-pass filter)
and build another classifier in the gesture event detection step
with carefully collected noise data. The other method is to use
an activation gesture for TapSkin. Only when an activation
gesture is detected, the system begins recognizing the whole
gesture set. The activation gesture should be both intuitive to
perform, has less confusion with other gestures, and provid-
ing low FN and FP error rates. We observed that the tap on
the left side of the watch satisfies these criterion by providing
the highest classification accuracy and relatively low FN and
FP error rates. Therefore, we chose this gesture as the activa-
tion gesture for all TapSkin gesture families. In practice, in
order to further reduce the false-positive errors, a double tap
instead of a single tap on the left of the watch can be used as
the activation gesture.

Improving the Sensing Unit
TapSkin uses both inertial sensing (gyroscope, accelerome-
ter) and acoustic sensing (microphone) to detect the tap events
on the skin. To understand which sensing unit is more infor-
mative in recognizing the on-skin tap gestures, we conducted
an additional experiment by using only the data from IMU or
the microphone in a traditional 10-fold-cross-validation for
the NumPad gesture set on each participant. The overall re-
sults across 12 participants are presented in Table 1. The table
shows that the IMU data provides more discriminative power
than the acoustic data, but together still provide significantly
better classification results.

Table 1. Accuracies with different sensor combinations
IMU Acoustic Both

Accuracy 88.82 65.72 92.96

We are currently using the built-in microphone on a smart-
watch to capture the on-skin sound, which is not designed
to capture with the body transmit ed sound. Potentially, the
quality of the acoustic information can be improved by using
a more sensitive sensor (e.g. contact mic) that can be better
coupled to the body rather than the air.

Improving the Gesture Design
The current gesture design is based on the layout of a num-
ber pad (NumPad), a control pad (DPad) and the corners of a
square shape (CornerPad). To help the experimental partici-
pants learn the tap locations, we drew the layout on the skin, a
solution that may not be desirable in practice. One challenge
is to design a gesture set that is both memorable as well as
machine recognizable.

One way to enhance recognition is to provide a small set of
tap gestures, which are located at greater distances between
each other (e.g., DPad, CornerPad). Therefore, the user can
easily memorize the location of each tap gesture. A drawing
layout may not be needed in such a case. Since there is a
larger space between the two tap locations, variance between
different taps for the same gesture can be tolerated by the
system and used for recognition.

Another method to prevent drawing icons on the skin is to
utilize the natural layout of the hand and map gestures to dif-
ferent parts of the body. For instance, each hand consists of 4

knuckles. If we map each of them with a tap gesture, a user
can easily repeat the tap even without any marker on the skin.

However, painting on the hand may not always be unaccept-
able for some users, if the drawn picture is well designed.
For instance, many people have already a tattoo on their skin.
Therefore, we can redesign the whole drawn layout of Tap-
Skin which makes it more like a tattoo, such that people will
not feel uncomfortable with a ’Tattoo” style layout on their
skin.

System Limitations and Future Work
There are several important limitations of our results and sys-
tem to consider before applying TapSkin to real applications.

First, in our validation experiment, gesture instances were
collected while the participants were holding their arms in a
static position. In practical scenarios, the users may use Tap-
Skin while they are in motion (e.g., while walking). Tapping
on the skin in motion would influence the inertial signals, as
well as potentially the accuracy of the tapping locations. Our
current technique may exhibit higher classification errors and
more false-positive errors. However, we can build separate
models for when the user is in motion (or different states of
motion, such as stationary, walking or running). To classify a
gesture, we need to first classify the user’s motion state (using
something like Google’s Activity Recognition service) and
choose the appropriate classifier for that motion state. To re-
duce the potential false-positive errors while the user is in
motion, a high-pass filter can be applied to the IMU data to
remove the low-frequency motion(such as walking). And a
separate binary classifier for noise detection can be built for
event detection too. We plan to further explore this issue in
the future.

Second, all the processing work is not processed solely on
the watch but using an external phone. The data transmission
between the watch and the phone introduces a high latency,
which influence the perceived user experience. We plan to
further improve the user experience by optimizing the pro-
cessing pipeline to reduce the delay.

Another limitation of the work is that the sound generated by
the tapping event may change in different situations. For in-
stance, if the hands sweat or are otherwise moistened, the wet
skin will change the acoustic signature of the tap, providing
an unknown influence on the system’s performance. We also
have not considered the effect of clothing covering the arm
or gloves on either the tapping or receiving hand. This intro-
duces an even more complicated recognition problem beyond
determining the motion state of the user. We note that these
issues also cause problems with the normal touchscreen inter-
action, suggesting a more general problem for future research
on wearable interaction techniques.

Figure 5 shows variance on the classification accuracies
across different participants. After reviewing the video, we
found that certain participants made weak taps on the back
of their hand, tending to result in a higher amount of false-
negative errors. The overall classification accuracies were
also influenced by the strength of the tap being too light. This
can be one potential limitation of TapSkin.
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Somewhat related to this last point, we intentionally in-
structed our participants to wear the smartwatch near the wrist
in a tightly fit fashion. This is helpful for collecting useful
IMU data, but may cause a problem for those who dislike a
tight-fitting wrist-mounted device. We are aware that some
users like wearing the watch loosely, where the watch may
slide along the arm. Such a movement may cause both motion
and acoustic noise, which introduces more false-positive and
classification errors. This is another limitation of our tech-
nique.

Furthermore, the current gesture family only contains tap ges-
tures. However, we have received encouraging results by ap-
plying the similar technology on detecting slide gestures on
the back skin of the hand. We would expect in the future to be
able to expand the gesture set to include more elaborate slid-
ing sequences, ultimately allowing a user to do a Grafiti-style
text input language.

CONCLUSION
In order to increase the richness of input to a smartwatch
without introducing any further on-body instrumentation, we
introduced TapSkin, which uses the on-board sensing of the
smartwatch to classify a variety of tapping gestures. Our re-
sults for classifying tap events are good enough for everyday
use in a variety of application scenarios. We can identify up
to 11 on-skin tap gestures (Number Pad with an activation
patch) around the wrist area with an accuracy of 90.69% in a
leave-one-session-out validation with 12 participants. These
results increase to 97.33% and 96.64% for reduced tap loca-
tions of a DPad and CornerPad, each with 4 tap locations and
an activation patch. While there are still some limitations to
our approach for practical deployment, we provided an ex-
tensive discussion to address those issues for the practical de-
ployment.
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