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ABSTRACT
Teeth gestures become an alternative input modality for differ-
ent situations and accessibility purposes. In this paper, we present
TeethTap, a novel eyes-free and hands-free input technique, which
can recognize up to 13 discrete teeth tapping gestures. TeethTap
adopts a wearable 3D printed earpiece with an IMU sensor and a
contact microphone behind both ears, which works in tandem to
detect jaw movement and sound data, respectively. TeethTap uses
a support vector machine to classify gestures from noise by fus-
ing acoustic and motion data, and implements K-Nearest-Neighbor
(KNN) with a Dynamic Time Warping (DTW) distance measure-
ment using motion data for gesture classification. A user study
with 11 participants demonstrated that TeethTap could recognize
13 gestures with a real-time classification accuracy of 90.9% in a
laboratory environment. We further uncovered the accuracy differ-
ences on different teeth gestures when having sensors on single
vs. both sides. Moreover, we explored the activation gesture under
real-world environments, including eating, speaking, walking and
jumping. Based on our findings, we further discussed potential
applications and practical challenges of integrating TeethTap into
future devices.
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1 INTRODUCTION
The vast-majority of input techniques for mobile devices demands
the use of hands as an input source, which may constraints user
experiences. For example, it would be inconvenient for a user to in-
teract with a smartwatch to reject a phone call while both hands are
occupied (e.g. carrying objects [25]). Therefore, providing hands-
free interactions may improve the wearable interactive experiences
under different situational uses and provide additional input oppor-
tunities for accessibility purposes (e.g., people with motor impair-
ments).

To understand different hands-free interaction options, prior
works explored eye-tracking systems [9, 10], tongue input [29],
teeth input [3, 23], facial expression [22], and voice recognition
[13]. Eye-tracking systems [10] usually require a mounted camera
attached to glasses or a stationary device to become hands-free.
Beyond having a camera facing users, more research leveraged
head-worn sensors to track input gestures from the face. How-
ever, many of these works either require complex on-body sensor
contacts on the face [16, 28, 38], abnormal sensor locations [23]
or placing sensors in the mouth [14, 30]. To simplify the sensing
requirements and hardware complexity, further research explored
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Figure 1: Our gesture set with 13 teeth gestures.

hands-free interaction techniques through sensors that are easily
mounted on existing wearable devices, such as glasses or earbuds.
For example, CanalSense leveraged barometers in the earbuds to
classify face-related movements [2]. However, past works mostly
explored face-related gestures through either barometers [2] or
bone-conduction microphones [3]. Furthermore, many existing
devices have already embedded inertial measurement unit (IMU)
sensors, such as eSense [18], into earpieces. However, acoustic-only
approaches may have limitations related to noise from speaking,
chewing or outside agents, and motion-only approaches may be
affected while the user is in a motion (e.g., jogging). Furthermore,
little research has explored the feasibility of leveraging motion sens-
ing (e.g., IMU) combined with acoustic sensing (e.g., microphone)
to recognize face-related gestures.

In this paper, we present TeethTap, a minimally-obtrusive eyes-
free, hands-free input technology that can recognize up to 13 dis-
crete teeth gestures (Fig. 1), which cover both places of contact (i.e.,
left side, right side, front and back) and methods of contact (i.e., sin-
gle bite, double bite, or hold). To recognize these 13 teeth gestures,
we built a lightweight earpiece, which secures a microphone and
IMU sensor behind each ear. The earpiece was made of 18 small
components which were 3D printed and then fitted together, and
was adjustable to various ear sizes and head widths. To understand
the feasibility of leveraging TeethTap to recognize teeth gestures,
we conducted a user study with 11 participants in five sessions
(i.e., one practice session, one training session, two testing sessions,
and one remounting session). We then analyzed the accuracy to
recognize gestures using a DTW-based K-Nearest-Neighbor(KNN)
algorithm, which has been widely used to classify IMU-based data
in previous literature [37].

Overall, TeethTap achieved 90.9% accuracy on average to classify
13 discrete teeth input gestures in the testing sessions. We further
compared the differences in the accuracy of having sensors on both
sides vs. one single side. We found that it is sufficient to only use a
single side sensor to recognize ‘manner’ gestures, such as single-tap,
double-tap, and hold. We also uncovered the accuracy differences in
remounting the sensors by participants themselves and participants’
subjective feedback. We further discussed the existing challenges of
using TeethTap in-the-wild, the potential applications (e.g., volume
control with “Hold” gestures), integrating TeethTap to other devices,
and how to avoid remounting problems of TeethTap. We believe
our findings shed light on future research that leverages motion
and acoustic sensing on earpieces to recognize teeth gestures. Our
contributions are summarized as follows:

• We explored the feasibility of leveraging motion sensing
captured around the ear, and fusing motion and acoustic
signals to filter noises, to recognize 13 discrete teeth gestures
with an average accuracy of 90.9%.

• We uncovered the effect on different gestures of having mo-
tion sensors on both sides vs. one side and discussed the
influences on recognition accuracy from remounting the
devices.

• We proposed a set of design implications to apply the com-
bination of motion and acoustic sensing on earpieces (e.g.,
in-the-wild scenario, design form factors, integrating to other
head-worn devices).

2 RELATEDWORK
Hands-free interaction techniques benefit people under different
scenarios. Prior research exploring hands-free wearable input de-
vices focuses on tracking eye movement [4, 10, 12, 33, 39], head
movement [11], jaw movement [35] and lip movement [8]. For ex-
ample, Rantanen et al. [28] leveraged head-mounted capacitive and
electromyography (EMG) sensors to detect different facial gestures.
Similarly, Interferi [16] allowed users to wear a face sensing mask
that used acoustic interferometry to track face-related gestures.
However, these approaches often require heavy instrumentation
on the user, such as cameras, magnets or headsets, to accurately
distinguish between user input gestures. Recently, reserachers pre-
sented C-Face[7], an ear-mounted wearable that can track facial
movements, which has shown promising performance. But it is
unclear how it can track teeth-input gestures.

To explore other hands-free interaction techniques that require
minimal hardware instrumentation and complexity, prior works ex-
plored different approaches to recognize teeth gestures [3] and
tongue gestures [26, 29, 34]. Researchers first explored the ap-
proaches by adding sensors inside the mouth, such as embedded
optical sensors into orthodontic dental retainers to detect tongue
gestures [30] and intraoral sensing bit to detect different tongue and
teeth gestures [14]. Moreover, Li et al. [21] used sensor-embedded
teeth to recognize four mouth-related activities: coughing, chew-
ing, drinking and speaking. However, these approaches might be
obtrusive to some people who do not have dental retainers or do
not want to hold a sensor bit in the mouth.

To avoid placing sensors inside the mouth, past researchers fur-
ther explored other approaches like placing bone-conduction mi-
crophones (e.g., [3]) on the skin to track teeth gestures or tongue
gestures. For example, TeethClick [23] placed a single throat mi-
crophone that touched the cheek and picked up vibration signals
from the jawbone to recognize single vs. double teeth clicks. To
further make the hardware instrumentation less obtrusive, Bitey
[3] recognized tooth click sounds from up to five different pairs of
teeth gestures with bone-conduction microphones worn above the
ears. However, Bitey tested user-specific gesture sets tailored to
each participant, and the study relied solely on acoustic data, which
has several limitations related to noise from speaking, chewing or
outside agents.

Another approach to track tooth-clicks is to use motion sensing
(e.g., IMU). Simpson et al. [31] introduced Tooth-Click Detector,
which used a three-axis accelerometer on an earbud to pick up
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strong vibrations from tooth-clicks to control computer cursors.
Zhao et al. [40] further employed the Tooth-Click Detector [31] as
well as an eye-gaze tracker to type on an on-screen keyboard. Re-
searchers had also used tooth-touch sound as an alternative mouse
device for accessibility [19, 32]. However, these approaches were
binary—only being able to detect whether or not there was a tooth
click. Recently, many existing earpieces have already embedded
IMU sensors, such as eSense [18], and have been applied for ac-
tivity recognition [17, 20]. However, it is unknown whether it is
feasible to detect different teeth gestures through earpieces with
IMU sensors.

Previous works also explored the combination of using IMU
sensors and microphones to detect eating behaviors [5, 6]. We un-
derstand that acoustic sensors are more error-prone to background
acoustic noise, and motion sensors are more likely to have false
positives while the user is in motion. Therefore, it is important
to explore how both motion and acoustic sensors can be used in
tandem on earpieces to detect different teeth gestures and reduce
false positives. In our work, TeethTap fuses acoustic sensing with
motion sensing to accurately classify a large set of 13 universally ap-
plied teeth gestures. By combining data from two separate sensing
modalities into one device, our system is able to better realize noise
and recognize teeth tapping movements. Furthermore, our instru-
mentation is minimally-intrusive, securing both sensors discreetly
behind each ear. Strategic sensor placement combined with a robust
classification system makes TeethTap a viable future accessory to
the ear.

3 GESTURE DESIGN
Our approach in designing teeth gestures was inspired in part by
two linguistic vowel sound features: the degree of aperture (jaw
openness) and tongue frontness (or backness) [27]. The degree of
aperture functions as z-axis, and is relevant for gesture release
detection. We applied the idea of tongue frontness to the jaw, func-
tioning as a y-axis. Lastly, we added a final axis (x-axis) for side-side
movement. The four extremes of our x-y plane can therefore be
described as front, back, left, and right. This design maximized
the spread of each point of contact to best avoid confusion when
classifying one gesture from another.

In linguistics, there are two primary categories of articulation:
the place of articulation and the manner of articulation [14]. As
described above, our gestures have four places the teeth can make
contact: front, back, left, and right. For each place of contact, Teeth-
Tap employs three possible “manners” of contact: single tap, double
tap, and hold. “Single tap” is a quick tap and release. Naturally,
“double tap” is composed of two quick single taps followed by a
release. “Hold” is a tap with a delayed release. The time passed
from the start of the hold gesture when the teeth first make contact,
and the release of the gesture is registered as a continuous variable
representing analog input. All non-hold gestures represent discrete
digital inputs. We also added a gesture into our gesture set. This
gesture is composed of three quick single back (regular) bites in se-
quence. We designed this gesture to be natural to produce yet easily
recognizable for the purpose of testing under various real-world
conditions such as walking, jumping, eating and speaking.

4 METHODOLOGY

Figure 2: Y-axis in relation to jaw movement

4.1 Sensing Principle
By positioning our IMU sensors just behind the bottom of the
ear where the jawline begins, we are able to collect gyroscope
movement across three axes whenever the jaw shifts upwards,
downwards or sideways. Fig. 2 illustrates this principle on the IMU’s
y-axis under the left ear. As the jaw extrudes leftward, it presses
against the bottom part of the left IMU, causing the gyroscope to
rotate upwards. The resulting rotation causes its y-axis value to
increase. On each earpiece, we also placed a microphone to collect
and analyze acoustic data from different teeth gestures.

Figure 3: Raw Gyroscope data for Left Single and Right Sin-
gle Gestures

Fig. 3(a) shows the left ear’s IMU data during a left single gesture,
clearly depicting this positive y-axis peak. Conversely, the right
ear IMU depicts a negative y-axis peak, as the right jaw retracts,
rotating the right IMU in the opposite direction (Fig. 3(b)). Similarly,
Fig. 3(d) further shows a similar peak, this time illustrating the
right ear’s IMU data for a single right gesture. Again, the negative
peak in Fig. 3(c) is caused by the left side of the jaw retracting and
rotating the IMU downwards.

Figure 4: Raw Gyroscope data for back triple, back double,
back single, and back hold Gestures
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Fig. 4 illustrates the gyroscope data from four gestures: back
triple, back double, back single, and back hold (top to bottom, re-
spectively). The first three high-amplitude peaks in Figure 4(a)
represent the back-triple gesture. The fourth smaller peak at the
end of the window represents the gesture release. Release energy is
captured when the mouth opens after performing a gesture. Back
double (Fig. 4(b)) and back single (Fig. 4(c)) also end with a release
peak. Notice that back hold (Fig. 4(d)), has no release peak because
hold gestures delay the release, categorizing it instead as a separate
sub-gesture.

4.2 Hardware Design
TeethTap’s hardware is composed of a 3D printed earpiece housing
two contact microphones and two IMUs. Our 3D printed earpiece is
made from 18 small individual components assembled together to
form a single unit (Fig. 5). The design is adjustable around the ears
and behind the head to accommodate for various ear sizes and head
widths. The natural flex of thinly printed PLA filament presses the
IMU sensors against the jawline just under the ear and secures the
microphones to the temporal bone behind the ear. We used two
contact microphones (BU-30179-000) [24] and two inertial measure-
ment units (IMU) (MPU-9250) [15] to capture sound and motion on
the skin behind each ear. The contact microphones are connected
to a customized PCB board, which amplifies and filters the acoustic
signals. The filtered data from acoustic sensors and the gyroscope
data from IMUs are sent to a micro-controller (HUZZAH32) [1]
using its on-board 12-bit analog to digital converter (ADC) and its
inter-integrated circuit (I2C) communication, respectively. The mi-
crophone data is sampled at 8000 Hz, and the IMU data is sampled
at 120 Hz. Lastly, the HUZZAH32 sends the data to a computer for
processing using WiFi.

Figure 5: 3D printed earpiece housing two microphones and
two IMUs

Figure 6: Data Processing Pipeline

4.3 Data Processing Pipeline
To collect sensor data from the HUZZAH32 board, we created a
Python program on the receiving computer. We also used the same
program to analyzes the data for gesture recognition in two stages:
gesture segmentation and gesture classification. Figure 6 illustrates
TeethTap’s data processing pipeline.

4.4 Gesture Segmentation
Our algorithm first segmented a two-second sliding window from
the continuous data stream generated from the microphones and
IMUs. As data flowed in and out of the queue, our sliding window
shifted 20 times a second with an overlap of 95 percent. Every
window, we checked if the microphone data exceeded a predeter-
mined energy threshold, which indicated a gesture was possibly
performed. Once our system detected a sufficient spike in audio
data, we then grabbed that window’s corresponding two-second
gyroscope data window. Next, we checked if the gyroscope’s y-axis
absolute maximum value exceeded a predetermined energy thresh-
old to understand whether a gesture was performed. At this stage,
we waited until the gesture was centred within the two-second
sliding window in preparation for segmentation. Because most
participants finished each gesture in roughly 1.5 seconds, further
segmentation was needed. To segment the data, we smoothed the
absolute value of the peak(s) to find the gesture’s center-point and
added a 90 data point buffer on each side to form a finalized event
region of 1.5 seconds (i.e., 180 data points).

4.5 Noise Detection with Acoustic Sensing
Although TeethTap’s contact microphone was hardly affected by
outside noise, self-generated noise such as eating, talking orwalking
might interfere with the system. To address this issue, we imple-
mented an SVM model classifier with a linear kernel to train both
acoustic features and IMU features in the frequency domain. To
collect acoustic data for noise and gestures, we asked one researcher
and two pilot participants (one female) to each perform each teeth
gesture five times, and we collected noise information by asking
them to talk, walk, eat food, and remain static in random order.
Overall, we collected 650 gesture segments and 650 noise segments.

TeethTap extracted features from the IMU data and the micro-
phone data for SVM classification. Seven of the eight IMU-related
features were calculated across each of the three axes for both
gyroscopes (six axes total). These included the number of peaks,
peak values, root mean square (RMS), zero-crossing rate, standard
deviation, minimum value, and maximum value. The eighth IMU-
derived feature was calculated by finding the correlation between
each of the left gyroscope axes with each of the right gyroscope
axes. We also collected two acoustic features from the microphone
data: the 30 lower bins of the Fast Fourier Transform (FFT) and 26
Mel-frequency cepstral coefficients (MFCC) [37]. This was made
for a total of 64 features used to train our SVM model. We then
applied the model to classify noise segments vs. gesture segments
from acoustic data in TeethTap (Fig. 6).

4.6 Gesture Classification Algorithm
After segmenting the data and filtering out the noise, we classified
the gestures by using K-Nearest-Neighbor (k=1) with a distance
measurement of multi-dimensional Dynamic Time Warping (DTW)
[36]. DTW is known for finding temporal patterns (similarities)
between time-series datasets (especially with small training sets).
Our first ran DTW (Dynamic Time Warping) on the data gathered
during gesture segmentation with each gesture instance from train-
ing, one at a time. DTW’s distance function would then output a
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value from every iteration. The gesture with the smallest distance
value was determined as the predicted gesture.

5 USER STUDY
5.1 Participants
To evaluate the real-time gesture recognition performance and the
usability of TeethTap, we issued a recruitment announcement on
the school campus and recruited 11 participants with an average
age of 24.3 (from 21 to 34, five female). Our participants are students
or employees of the university, and all of them have healthy teeth.
Each participant received a $10 gift card or cash for participating
in our study. The study for each participant lasted around one hour
and was conducted in a laboratory environment. The study was
approved by the institutional review board (IRB).

Figure 7: The GUI of the user study

5.2 Procedure
At the beginning of the user study, we played a video that demon-
strated how to perform 13 TeethTap gestures using animations
of teeth constructed with AutoCAD (Fig. 1), followed by a live
demonstration of the system by the researcher. Next, we helped the
participant put on the device and explained the user interface (UI)
of the system. The participant was asked to sit in front of a table
with a monitor that displayed the testing UI. We then conducted the
study in five different sessions: one practice session, one training
session, two testing sessions, and one remounting session.

In each of the five sessions, participants were asked to perform
each of the 13 gestures five times in a random order, which was
indicated in the monitor. The first session was the practice session,
which was designed to help the participant familiarize themselves
with the gestures and testing system. The second session was the
training session. The data collected in the training session was
used to train an ML model, which was then used to provide real-
time classification in later sessions. In the two testing sessions,
we provided real-time classification results to the participant. The
model was trained using the data collected in the training session.
If the gesture was recognized as the same gesture appearing on
the screen, we changed the background to green. Otherwise, the
background was turned to red, and the recognized gesture’s name
and the picture were displayed. Whenever the system detected a
holding gesture, the UI displayed a clock and asked the participants
to hold for a randomly generated time interval (two to four seconds)
until release. If no release gesture was detected within five seconds
after the timer ended, the system timed out, counting the attempt as
a recognition failure and proceeding to the next gesture in sequence.

To further understand the effect of taking TeethTap off and put it
back on the same training data, we conducted a remounting session.
Participants were asked to take off our prototype and put it back
before this session started. Afterward, participants followed the
same instructions as the testing session. In total, we collected 2860
(11*13*5*4) gesture instances in the training, testing and remounting
sessions. At any point in the study, if the participant misconducted a
gesture (performed a gesture than was different from the requested
gesture), we asked the participant to report this to the researcher,
and we removed these instances from the training and testing
data. In total, 89 out of 2860 instances were removed. The real-
time classification results and sensor data were saved for later
analysis. After our participants finished the five sessions, we asked
their subjective feedback on our system, potential applications, and
improvements.

5.3 Results

Figure 8: The recognition accuracy for 11 participants in the
testing sessions

5.3.1 Results from Both Earpieces. In the two testing sessions of
recognizing 13 different gestures, we found that our participants
reached an average accuracy of 90.9% (SD = 4.1%). Within the 1382
total teeth gestures from 11 participants, TeethTap successfully
recognized 1256 gestures. Fig. 8 demonstrates each participant’s
individual teeth gestures recognition accuracy. We found that P3
and P8 had the highest and lowest accuracy of 96.2% and 83.9%,
respectively. There were only five holding gesture instances where
the system failed to detect the release gesture. As shown by the
confusion matrix presented in Fig. 9, the back-triple gesture had the
highest accuracy, which reached over 99.1%. Among all different
gestures, the left-hold-gesture had the lowest accuracy of 81.9%. By
analyzing the false positive from the confusion matrix, we found
that the right-hold-gesture is most likely to be falsely recognized
as back-hold-gesture (9.1%). Overall, confusion was more promi-
nent among similar gestures, such as single and holding gestures
(holding gesture is a single tap gesture with a delayed release).

5.3.2 Comparison between Single and Double Earpieces. To un-
derstand whether having both earpieces are necessary and which
gestures are less prone to errors by only having sensors on one
side, we further analyzed the accuracy with Left-only earpiece or
right-only earpiece. We used the segmentation data saved in the
training session and two testing sessions and followed the same
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Figure 9: The confusion matrix for recognition accuracy of
the testing sessions

data processing pipeline as both earpieces. We found that the aver-
age accuracy dropped 18.4% to 72.4% for only using the left earpiece,
and it dropped 16.0% to 74.8% for the right one (Fig. 8).

In our gesture set, there are three “manners” of contact: double-
tap, single-tap, and hold. To understand whether having a single
earpiece affects the accuracy, we relabeled the data by only divid-
ing it into three groups: double-tap, single-tap, and hold. From
the results (Fig. 10 a), we first found that the average accuracy
across all eleven participants in the testing sessions reached 96.1%
to recognize these three different gesture groups by using both ear-
pieces. By only having single side earpiece, we found the average
accuracy only decreased by 1.6% for the left earpiece and 2.9% for
the right earpiece, respectively. Therefore, we can conclude that
using a single side earpiece could reach relatively similar accu-
racy as double-side earpieces to classify among single-tap gestures,
double-tap gestures, and hold gestures.

To understand the effect of earpiece positions on different teeth-
contact areas, we relabeled the data as front-teeth-tap, back-teeth-
tap, right-teeth-tap, and left-teeth-tap. We found that the average
accuracy in classifying the four kinds of gesture groups with both-
side earpieces stayed around 90.9% (Fig. 10 b). However, the accu-
racy decreased dramatically to 74.9% with the left only earpiece
and 75.1% with right only earpiece, respectively. From the results,
we found that the accuracy with both-side earpieces are vital to
recognize teeth gestures are different positions.

To further explore the accuracy correlation between the position
of earpiece placement and the teeth-tap position, we first conducted
a comparative analysis of the accuracy of left-teeth-tap gestures
with the left only earpiece and right only earpiece. For the three
left-teeth-tap gestures (i.e., ‘left-single-tap,’ ‘left-double-tap,’ and
‘left-hold’), the average accuracy with left only earpiece (93.2%)
outperformed 3.3% than the right earpiece (89.9%). On the other side,
we also analyzed the same results for right-teeth-tap gestures (i.e.,
‘right-single-tap,’ ‘right-double-tap,’ and ‘right-hold’). We found
that the average accuracy with a left only earpiece (88.4%) was 5.8%
less than the right one (94.5%). Therefore, the accuracy is higher

for a single earpiece the recognize the teeth gestures that reside on
the same side as the earpiece.

Figure 10: a) The accuracy of different channels for ‘manner’
gestures b) The accuracy of different channels for four teeth-
tap positions

5.3.3 Remounting Effects and Subjective Feedback. In our study, we
conducted a remounting session to understand whether taking the
earpieces off and putting them back would affect the accuracy. Over-
all, we found the average accuracy of recognizing 13 gestures across
11 participants reached 85.3%, which dropped 5.5% from the testing
sessions. Therefore, we agree that having the participant remount
the sensor by themselves may affect the recognition performance.
By analyzing the accuracy changes across different participants, we
found that P5 (-12.1%), P3 (-11.5%), and P9 (-10.9%) had the accuracy
dropped over 10% in the remounting session. After finishing the
study, P5 mentioned his experiences of the remounting session and
concerns on making sure the system stays at the relatively same
position every time:

“...To be honest, I forgot where the previous position
was after I took it off and trying to put it back. There-
fore, I would recommend the researchers to design the
artifact that fit on a fixed position on my ears, such
as using my ears’ shape and force to keep the sensor
at the same position, just like the sporting earphones,
they always fix at the same place when I use them...”

We further analyzed the results to uncover how does remounting
affect the performance of different gesture sets. For ‘manner’ ges-
tures, we found that the performance only dropped 3% from 96.1% to
93.1% after the participants remounted our prototype. Therefore, we
revealed that ‘manner’ gestures are less influenced by remounting
the devices.

After about an hour of the study, our participants completed
about 325 gestures, no one reported that they were fatigued. P4
specifically mentioned the benefit of teeth gestures on privacy and
‘faster response’:

“...I think the key benefit of having teeth gestures
as another input modality is you can make instant
responses without even take out the smart devices.
Such as playing or pausing music, taking a phone
call, I could simply use teeth taps to interact with
my smart devices, especially I want this to be applied
to my Airpods. Another benefit is that nobody else
knows what I did, this will be very useful if I want to
reject a call in a meeting...”
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6 DISCUSSION
From our study and findings, we uncovered the feasibility of lever-
aging IMU sensors on earpieces to track teeth gestures with an
accuracy of 90.9% on average. We also introduced what gesture sets
were more error-prone to a single earpiece and whether the subjec-
tive feedback and design implications for remounting the device.
In this section, we further discuss activation gestures for in-the-
wild scenarios, and the opportunities and challenges of deploying
TeethTap in real-world future applications.

6.1 In-the-wild Scenario
From the findings, we found that TeethTap successfully recognized
99.1% for the back-triple gesture. We then conducted a short evalua-
tion to explore whether the back-triple gesture could function as an
activation gesture, such as "Hey Siri," to reduce the concerns from
false positives. For the "in-the-wild" evaluation, we evaluated how
well the activation gesture works while conducting different daily
activities. For the same participant group, they were instructed
to conduct the following activities in sequence: talking with the
researcher, writing on a paper while talking, walking or running
around the lab, and eating or drinking. At ten randomized intervals
during this process, the researcher asked the participant to perform
an activation gesture. Throughout this process, TeethTap was run-
ning in real-time on a laptop to detect activation gestures (binary
classification). If the performed activation gesture was not detected,
we counted the attempt as a false-negative error. If the participant
did not perform a gesture and the system detected an activation
gesture, we counted this as a false-positive error. The recognition
model was built using the five activation gesture instances collected
in the previous training sessions.

Eleven participants tested the activation gesture while perform-
ing various activities over a total span of 71 minutes and 33 seconds.
Among all Eleven participants, zero false-positive errors were trig-
gered. However, we detected 23 false-negative errors from the 133
gestures. One thing worth mentioning here is that the training data
for the activation gesture (back-triple gesture) was collected in the
training session while the participants were sitting still in a chair.
The added motion introduced from the prescribed activities likely
influenced recognition performance. However, we intentionally
designed the system to avoid false-positive errors while being more
tolerant of false-negative errors, since false-positive errors arguably
interfere more with performing daily activities. Therefore, future
research could leverage a similar approach to generate an activation
gesture to prevent false positives.

6.2 Applications and Gesture Sets
TeethTap offers up to 13 discrete teeth input gestures with an aver-
age accuracy rate of 90.9%. Our participants in our study showed
strong interests in embedding teeth gestures to control their smart
devices.

However, to interact with most applications, we may not need
to recognize all 13 input gestures at the same time. In other words,
a subset of the 13 gestures may be enough for many applications,
enabling an even higher accuracy rate. In this section, we discuss
potential applications of TeethTap and map possible gesture subsets
to each application.

6.2.1 Navigating through audio or video content. The task of navi-
gating through audio or video content could call for the following
five gestures: back single (pause/play), left single (previous track),
right single (next track), left double (rewind), and right double (fast-
forward). The accuracy of recognizing these five gestures is 92.3%
using training and testing data from the user study.

6.2.2 Volume control. The holding gesture is designed to provide
continuous input, such as changing the volume. A user could sim-
ply hold down a gesture to raise or lower volume and release the
gesture when the volume has reached the desired level. In this ap-
plication, only two gestures would be needed: left hold (turn down
the volume) and right hold (turn up the volume). The accuracy of
recognizing these two gestures is 93.2% using training and testing
data from the user study.

6.2.3 Operating phone call or videochat. Phone calls often come
at socially inappropriate times. TeethTap could provide discreet
gestures that are eyes-free and hands-free to operate a call with
two gestures: back double (accept the call) and back single (reject
call/hand up). The accuracy of recognizing these two gestures is
98.6% using training and testing data from the user study. Even in
the remounting session, we found that TeethTap could still success-
fully recognize these two gestures at an accuracy of 94.6%.

6.3 Integrating TeethTap to existing head-worn
devices

The current form factor is an independent earpiece, as shown in
Figure 5. However, we envision TeethTap could be easily adopted
into the form factor of existing earphones, headphones, VR headsets
or Glass frame technologies. The key integration step is to attach
IMUs and contact microphones behind the ear. The form factor
could be an extended piece attaching to a Glass frame. Sensors
could also be embedded in headphones, following the curvature of
the headphone ear-pad around the back of the ear. We believe that
integrating such a change would require only hardware alterations,
with no changes in the algorithm being necessary.

6.4 Improving the performance of
session-independent models

The goal of TeethTap is to provide a user-dependent, but session-
independent technology to recognize discrete teeth gestures. In
other words, the user needs to provide a few training samples ( e.g.
five instances per gesture) when they use TeethTap for the first
time. However, they should not have to recollect training data every
time they wear the device. The testing results from the fifth session
showed that after taking off the device and putting it back on again,
the recognition accuracy of TeethTap decreased to around 85.3%.
Apparently, there is room for improvement in the performance.

There are several potential solutions that can help improve
TeethTap’s performance as a session-independent input technology.
Firstly, we can improve the design of the form factor, by improving
its precision in applying consistent pressure to the same areas of
the body every time it is put on. After all, form factor displace-
ment between sessions is the primary reason for this performance
decrease across sessions. Secondly, we can further process sensor
data (e.g. normalization) to account for deviations in form factor
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positioning. Lastly, we could also consider utilizing acoustic sensor
data in the gesture classification process (not just the segmentation
process), as wearing a position would likely have less of an effect
on the acoustic sensor. For instance, we can calculate energy differ-
ences between the left and right acoustic sensors to reliably dictate
whether an incoming gesture comes from the left side or right side
of the mouth.

7 LIMITATION AND FUTUREWORK
TeethTap demonstrates the proof-of-concept for detecting a rich
set of discrete teeth gestures using an earpiece. However, we do
find several limitations and future work from our user evaluation
and prototype design. In the current user study, we did not evalu-
ate TeethTap’s performance in recognizing 13 gestures when the
user is in motion (e.g. walking, running), which can be limiting in
the context of daily life. In the future, we plan to further optimize
our system to be functional while the user is moving. There are a
few solutions we plan to explore to achieve this feat: 1) we plan
to build two separate models—one for static posture and the other
for motion—allowing our system to toggle between modes depend-
ing on context; 2) we plan on collecting a larger set of training
samples and using more advanced machine learning techniques.
Furthermore, our participants were from 21 to 34, which lead to
being unknown about how well do aging population perform in
our study by using our system. In future work, we will further
conduct a study with older adults and also discover how well does
TeethTap help people with motor impairments who have problems
using their smart devices to provide input commands. Although we
claimed the existing limitations of our current work, we do believe
the current approach has proved the feasibility of leveraging mo-
tion tracking on earpieces and combined with noise-filtering from
acoustic sensing to recognize different teeth gestures.

8 CONCLUSION
In this paper, we present TeethTap, a wearable technology that can
recognize up to 13 discrete teeth gestures. It uses an earpiece which
attaches an IMU sensor and a contact microphone behind both the
left and right ears. A KNN-based (with the distance measurement of
DTW) algorithm is developed for gesture recognition. A user study
with 11 participants shows that it can recognize 13 gestures with
an accuracy of 90.9%. We also uncovered the importance of hav-
ing both-side earpiece available when recognizing position-based
gestures comparing with the left-only or right-only earpiece. We
further showed the sufficiency of only using a single earpiece to
leverage motion sensing to recognize ‘manner’ based gestures. In
the discussion, we introduced the approach of reducing false posi-
tives through an in-the-wild evaluation with an activation gesture.
We also discussed the opportunity and challenges of widely de-
ploying TeethTap on real-world devices in the future. We believe
that by fusing motion and acoustic sensing into a minimalist ear-
piece, TeethTap offers a promising set of novel eyes-free interaction
gestures for future applications.
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