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ABSTRACT
Current interactions on a smartwatch are generally limited to
a tiny touchscreen, physical buttons or knobs, and speech.
We present WatchOut, a suite of interaction techniques that
includes three families of tap and swipe gestures which ex-
tend input modalities to the watch’s case, bezel, and band.
We describe the implementation of a user-independent ges-
ture recognition pipeline based on data from the watch’s em-
bedded inertial sensors. In a study with 12 participants using
both a round- and square-screen watch, the average gesture
classification accuracies ranged from 88.7% to 99.4%. We
demonstrate applications of this richer interaction capability,
and discuss the strengths, limitations, and future potential for
this work.

Author Keywords
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learning;

ACM Classification Keywords
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INTRODUCTION
The richness of touchscreen interactions on a smartphone
cannot be easily replicated on a smartwatch. The relatively
tiny screen exaggerates issues that already existed with smart-
phone interactions, such as the fat finger problem and occlu-
sion [21]. There is even greater motivation to explore inter-
action techniques away from the touchscreen for these wrist-
mounted devices.

We present WatchOut, using inertial sensors to provide a va-
riety of tapping and sliding gestures on the side, bezel, and
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(a) SideTap (b) BezelButtons
(c) BandSwipe

Figure 1: WatchOut Interaction Families

band of a smartwatch. WatchOut offers the following re-
search contributions :

• The design and implementation of three gesture families
that extend smartwatch interactions to the side, bezel, and
band of the watch.

• An evaluation of the interaction performance with user-
independent machine learning models in a laboratory en-
vironment.

• A demonstration of applications of WatchOut, and the
practical challenges to improving and deploying the
WatchOut interactions in real-world scenarios.

RELATED WORK

Novel interactions on mobile phones
Smartphones and wearable devices share many common chal-
lenges of mobile interaction design. Since Hinckley et al. first
demonstrated the possibility of extending interactions on the
phone in 2001 [8], much research has explored novel mobile
interaction techniques by designing novel gestures on touch-
screen [6, 15] or beyond [23, 12, 2] the touchscreen.

Novel interactions to support wearable devices
Compared with smartphones, the input for wearable devices
is even more limited. To improve the input experience on
wearable devices, researchers have proposed various novel
input techniques. These involve the user wearing additional

136

ISWC '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2971763.2971775&domain=pdf&date_stamp=2016-09-12


devices on the hands or wrist and arms [19, 4, 5] to detect
hand gestures.

Novel interactions on smartwatches
As the smartwatch has become more popular, HCI re-
searchers have explored how to improve the user experience
in spite of the inherent limits of the small touchscreen and
form factor. Approaches include increasing the size of the
screen area [14], reducing the size of the touch area [21], or
by applying carefully designed touchscreen gestures [16, 22].
Another approach is to make other parts of the watch interac-
tive [1, 3], including the band[18], or an additional arm band
[10]. Others have considered extending the interaction area to
a larger space around the device; for example, recognizing 3D
gestures in the space above [11], around [13, 17] the watch or
expand the perception space by using dynamic peephole[9].

Most of these solutions require either some additional sens-
ing infrastructure on the device or a completely new device
to be worn by the user. Research [15, 23, 24] have shown
the possibility of detecting the taps on the side and back of
a phone with built-in sensors. However, the shape, the worn
position, and the size of a watch is different from a smart-
phone. Therefore, how to design the gesture families and situ-
ated them into the watch applications are the new challenges.
Compared with recent work [20] that recognizes the finger
gestures by using built-in sensors on a smartwatch, WatchOut
will demonstrate a comparable variety of input gestures on
the watch case, with the advantage of using only existing in-
ertial sensing common on smartwatches today.

GESTURE DESIGN AND DETECTION
Smartwatches today commonly include two inertial sensors,
an accelerometer and a gyroscope. We describe the response
of these sensors to various physical stimuli and then define
three families of interaction gestures based on these stimuli.
Finally, we describe the data processing pipeline for gesture
recognition.

Theory of Operation
In figure 2, we show the raw gyroscope data generated by
tapping on the top of the watch bezel, the side of the watch
bezel (what we call the case), and swiping on the watchband.
We also observed similar patterns in the accelerometer data.

In figure 2b, we can see that a tap on the left will generate a
positive spike along the x-axis of the gyroscope data, while a
tap on the right will generate a negative spike. The lower fre-
quency and lower intensity sensor data for an arm movement
is also visually distinct from the harsh and high-frequency
data from a tap gesture.

We also observed similarly clear data from taps on the top
face of the watch bezel. Figure 2c shows four taps performed
on each side of the watch bezel face (North, East, South, and
West). Taps in the North and South will have relative larger
x-axis gyroscope readings, and taps in the East and West will
have a relative larger y-axis readings. Interestingly, the read-
ing of the y-axis gyroscope generally appear to be smaller
than the readings on the other two axes. This is because the

(a) The coordinate system on the
watch
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(d) Swipe on watchband

Figure 2: Sensor data collected when various gestures are per-
formed

watch has more freedom to move along the x-axis due to the
way a watch is worn.

Swipes on the watchband can also be detected through the gy-
roscope data (Figure 2d). Swiping up and down will tilt the
watch positively and negatively along the y-axis, and swip-
ing left and right will tilt the watch positively and negatively
along the z-axis. These four gestures are visually apparent
when comparing the strength of the signal for each axis and
and the polarity of the peak.

Gesture Families
Based on our observations of the raw sensor data from various
tap and swipe gestures around the case and band of a watch,
we designed three families of gestures: SideTap; BezelBut-
tons; and BandSwipe (see Figure 1).

SideTap
The user can tap on either the left or the right side of the
watch case. These interactions can be performed eyes-free,
and are appropriate for performing simple acknowledge or
dismiss actions, such as rejecting a phone call.

BezelButtons
A user can tap the bezel area around the outside of the screen,
as Figure 1b shows. We can recognize up to eight tap lo-
cations, whose positions are equally distributed around the
watch case. Intuitively, these eight tap gestures can be used
for navigating directionally, as with a D-pad. Potentially,
BezelButtons can also help facilitate richer menus on the
watch. For instance, most watch applications can only dis-
play a limited number of menu choices (usually around three
items) due to the limited screen real estate.

BandSwipe
We can turn the band of a watch into an interactive surface
by recognizing four different directions (up, down, left, right)
of a sliding gesture, as Figure 1c shows. These four gestures
can be naturally used in applications that require directional
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controls. The BandSwipe gestures can also be used in com-
bination with the touchscreen to enhance interaction.

Data Processing
To recognize a gesture, we first segment the sensor data for
event detection, and then classify the gesture with pre-built
machine learning models. We use the sequential minimal op-
timization (SMO) implementation of support vector machine
(SVM) provided by Weka[7] to build the models, which are
also used for real-time event detection and classification in
our interactive prototype.

To recognize the gestures, we built two SVM models. The
first model identifies sensor data as one of two classes: ges-
ture or noise. If the data is classified as a gesture event, it is
passed to the second model for classifying which gesture it is.

Event Detection
We collect gyroscope and accelerometer (linear acceleration)
data on the watch at their highest sample rates.To process
the data, we apply a one-second sliding window with 50%
overlap. Within the window, we test the maximum absolute
value for each axis of the gyroscope and the linear accelera-
tion, respectively, against a threshold value. The thresholds
are slightly different for each gesture family. If none of the
threshold criteria are met, we identify that no gesture has been
performed. If one of the threshold criteria is satisfied, we pro-
ceed to the next step. This threshold-based method is simple
but has been proven effective in excluding non-gesture events
in the preliminary experiments, especially when the wrist is
still. However, too strict of criteria would increase false neg-
ative errors. We elected to set very loose thresholds, which
can prevent false negative errors but allow false positive er-
rors, which can be eliminated b classification later on.

If the above threshold criteria are passed, we identify the peak
absolute value in the entire data buffer for each sensor (gyro-
scope and accelerometer), and the axis on which that peak
falls. We use 0.25 seconds data before and 0.25 seconds data
after the located peak to form an instance containing data of
0.5 seconds, which will be used for feature extraction. If the
peak is too close to the end of the data buffer, we advance to
the next one-second window with 50% overlap.

Feature Extraction
We first derive virtual sensors (Deri-gyro, Deri-linaccl) by
calculating the derivative for each axis of the gyroscope and
the linear accelerometer. For each sensor and virtual sen-
sor axis, we calculate a set of statistical features—the min-
imum, maximum, mean, standard deviation, median, root-
mean-square (RMS), variance, zero-crossing-counts, the val-
ues and difference of the first and second peaks. To capture
the relative relationship between three axes of each sensor,
we also calculate the ratio of the energy, the first and sec-
ond absolute peak values, the difference between the first and
second absolute peak values, and the correlation for the data
of each two axes on each sensor. In total, 192 features are
extracted for each half-second instance.

Classification

The features are used to train two support vector machines
(SVM) for gesture classification. The first classifier distin-
guishes the noise instances from the gesture instances. If a
gesture is detected, the second classifier then identifies which
gesture is being performed and we move to the next window
without overlap.

Choice of Hardware
We implemented our interaction techniques on two Android
Wear smartwatches: 1) the LG G Watch Urbane; and 2) the
Sony Smartwatch 3. We chose these two watches because
they exhibit different physical characteristics. The LG Watch
has a round screen and a leather watchband. The Sony watch
has a square screen and a rubber watchband. We offload most
computation work to a paired Google Nexus 6 smartphone,
transmitting all of the sensor data wirelessly. In the future,
it is conceivable that smartwatches will have sufficient com-
puting power to run the gesture recognition software locally.
All the inertial sensors are set to sample at the highest rate
(200-250 Hz) during the data collection process.

Training the model
We collected training data from seven people to build two
classification models (event detection and gesture classifica-
tion) for each of the three gesture families and for each watch
(2 ∗ 3 ∗ 2 = 12models). The first three trainers were three
of the authors. Each trainer provided 20-40 samples for each
gesture, in order to train the gesture classifier. Each trainer
also provided 20-40 samples of noise (non-gestures), in order
to train the event detection classifier. The noise samples in-
cluded actions such as raising the arm and rotating the wrist.
After collecting these samples, we built the event detection
model by labeling all the gestures as gesture, and the non-
gestures as noise. For the gesture classification model, each
gesture sample was labeled with its gesture name.

EVALUATION
We conducted a user study to to determine the extent to which
a user-independent model can successfully select and classify
the various input gestures. In addition, we report the impact
of adding additional training data to the overall accuracy of
a user-independent model for each gesture family on each
watch.

Study Design
We evaluated WatchOut in a laboratory environment in or-
der to determine how accurately our system could recognize
unique gestures. We had each participant perform gestures
from the three gesture families (SideTap, BezelButtons, and
BandSwipe) on each of the two smartwatches (LG and Sony).
We also collected survey responses before and after the inter-
action portion of the study.

Participants We recruited 12 participants (4 females, average
age 25.7), all from a university campus. Three of the par-
ticipants are daily smartwatch wearers, four had experience
using a smartwatch, eight had never interacted with a smart-
watch.

Procedure We asked participants to wear each watch on the
left arm and use the right hand to perform the gestures. In

138

SESSION: INTERACTION



addition, we asked participants to wear the watch below the
wrist joint on their arm, and to adjust the watch band so it fit
tightly on the arm.

For each gesture family, we first demonstrated the interaction
to each participant and then let them practice it. The partic-
ipants were instructed to perform the gesture not too gentle
by comfortably. The order of the two watches and the three
gesture families for each watch were randomized. We then
asked the participants to perform two sessions for each ges-
ture family on each watch. Each session consisted of ten stim-
uli for each gesture in the family, presented in random order.
The task was to perform the gesture indicated by each stim-
ulus. In addition, participants also recorded two sessions of
ten “noise” events by lifting their arms, as described in Train-
ing above. Each participant session lasted approximately one
hour. For each stimulus presented to a participant, we saved
the sensor data for the gesture in files with a length of 3 sec-
onds for later analysis.

Results
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Figure 3: Overall accuracy of gesture classification for 12
participants, based on 2, 7, and 18 people in training set.

In total, we collected 6698 gesture samples from 12 partici-
pants. We ran several analyses of the gesture recognition per-
formance offline, with data collected from the 12 participants
and the training sets.

False Positive
Rate

False Negative
Rate

SideTap Round 0.63% 0.21%
SideTap Square 0.21% 0.00%
BandSwipe Round 2.40% 0.42%
BandSwipe Square 0.73% 0.63%
BezelButtons Round 0.16% 1.05%
BezelButtons Square 0.00% 1.30%

Table 1: Overall event detection accuracy for each gesture
family and watch.

Overall classification accuracy
In the first analysis, we used “leave-one-participant-out”
methods. Both the noise-classifiers and gesture-classifiers
were trained with all the data from the seven trainers, in ad-
dition to data from the remaining eleven participants.

The first stage of our gesture recognition pipeline is event de-
tection. If we did not detect any gesture event in the sen-
sor data from the files representing one gesture instance, we
counted that instance as a false negative error. If we de-
tect more than one gesture instance from the sensor data, we
counted that instance as a false positive error. The false neg-
ative and positive instances (see Table 1 for rates) were not
passed into the gesture recognition classifier.

Out of 6698 total gestures recorded, the total number of false
positives was 37 and the total number of false negatives was
56. The false positive rates ranged from 0.00% (BezelBut-
tons on the square watch) to 2.40% (BandSwipe on the round
watch). The false negative rates ranged from 0.00% (SideTap
on the square watch) to 1.30% (BezelButtons on the square
watch).

The second stage of the pipeline is the gesture recogni-
tion classifier. The overall accuracy for gesture classifi-
cation ranged from 88.7% for BandSwipe on the round
watch/leather band to 99.4% for SideTap on the square watch
(see the third/green bar for each gesture/watch condition in
Figure 3).

We also produced a confusion matrix for all the gestures in
each gesture family on each watch. The rows are the stimuli,
and the columns are the recognized gestures. The accuracies
of SideTap gesture recognition were between 96% to 100%,
with the worst confusion of 4% on the round watch, mistaking
a left tap for a right tap.

The confusion matrix for the BandSwipe gesture family is
presented in Table 2a (round watch) and Table 2b (square
watch). The gesture classification on the square watch was
more accurate, with the worst confusion at 5%, mistaking an
up swipe for a down swipe. There were more classification
errors for BandSwipe on the round watch, with accuracies for
each gesture ranging from 83% to 91%. We revisit the po-
tential impact of the leather watch band on accuracy in the
Discussion below.

Training with fewer data sets
Figure 3 also shows the results when the training model in-
cludes fewer examples. We compare the recognition results
when only 2 trainers are used (leftmost/red bar for each con-
dition), when 7 trainers are used (middle/pink bar), and when
18 trainers are used (rightmost/green bar). Figure 3 reveals
that for all cases, the accuracy improves with more training
data, but the increase is much greater when moving from 2 to
7 trainers than when moving from 7 to 18 trainers.

↑ → ↓ ←
↑ 0.83 0.01 0.13 0.03
→ 0.01 0.91 0.05 0.03
↓ 0.05 0.00 0.91 0.03
← 0.04 0.02 0.04 0.89

(a) On the round watch.

↑ → ↓ ←
↑ 0.95 0.00 0.05 0.00
→ 0.00 0.99 0.00 0.01
↓ 0.02 0.00 0.98 0.00
← 0.01 0.00 0.00 0.99

(b) On the square watch.

Table 2: Confusion matrix for BandSwipe

DISCUSSION
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Figure 4: Gesture recognition accuracy for each participant

Most of the gestures were recognized with accuracies of
above 90%, based on the user-independent model trained with
data from 18 people. The best accuracy was observed for
the SideTap gesture family, which is not surprising because
it only included two gestures (left and right taps). The worst
accuracy was for BandTap on the round watch, which had a
leather band with stitching. The texture of this watch band,
as opposed to the rubber band on the square watch, appeared
to be more challenging for our gesture recognizer. We further
discuss our results and explore the limitations of our approach
before we demonstrate practical applications of the WatchOut
gestures.

Generalizability
We evaluated WatchOut on both a round-faced and a square-
faced watch. We built separate gesture recognition models
for each watch, and for each gesture family. The overall
accuracy for gesture recognition was similar for each watch
on the SideTap and BezelButtons gesture families. In order
to determine if the gesture recognition models were device-
independent, as well as user-independent, we tested partici-
pants’ data from the round watch with the models generated
for the square watch, and vice versa (see Figure 5).
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Figure 5: Device-independent gesture recognition accuracy.

The cross-device accuracy results for SideTap were virtually
the same for the round watch (96.8% vs. 96.6% for the native
model), and reasonably good for the square watch (88.4% vs.

99.4% for the native model). Because the SideTap model only
needs to classify two distinct gestures, it is not suprising that
these models exhibit the highest device independence. We
suspect that the round watch model performed worse on the
square watch, as opposed to vice versa, because the square
watch better affords a tap consistently in the center of the left
or right side as compared with the more ambiguous left or
right target on a circle.

The BezelButtons gesture family does not appear promis-
ing for building device-independent models, at least between
round and square watches. The cross-device accuracy results
for BezelButtons were slightly worse for the round watch
(80.4% vs. 92.6% for the native model), and considerably
worse for the square watch (70.3% vs. 92.9% for the native
model). We suspect that the distinct corners of the square
watch provide a more specific and consistent target for the
NE, SE, SW, and NW gestures as compared with the round
watch. The different shapes of the watch cases may also pro-
duce different physical responses in the inertial sensors to
taps on the bezel. In future work, we will investigate device-
independent models between two different square watches,
and between two different round watches, which could arise
based on different relative locations of the inertial measure-
ment units on those devices.

We observed the highest discrepancy of accuracy between
watches for BandSwipe, likely based on the differences in
each watch band. The square Sony watch had a smooth rub-
ber band, while the round LG watch had a more textured,
leather band with raised stitching. Overall, the BandSwipe
recognition accuracy was considerably lower (88.7%) on the
leather band as compared to the accuracy of 97.7% on the
rubber band. As can be seen from Figure 4, the recognition
accuracy for four participants (P2, P7, P9, P11) was particu-
larly poor, each being less than 84%. These difference may
be due to how the friction from swipes in the two materials is
reflected in the inertial sensors, and also due to the difference
described above on how some users performed swipes on the
leather band. Therefore, to apply BandSwipe on a watch for
achieving best accuracy, we suggest using the band which is
made of high friction material (e.g. rubber).

BezelButtons Accuracy with Four or Eight Gestures
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The BezelButtons family includes eight distinct gestures
that our classifier can distinguish, as compared to four for
BandSwipe and two for SideTap. The recognition accuracy
was sufficiently high, at 92.6% for the round watch and 92.9%
for the square watch. Upon examination of the confusion ma-
trices, we discovered that the vast majority of classification
errors were for adjacent gestures (e.g., NE or NW when N
was intended). For the square watch (Table 3b), there was no
confusion greater than 0.05% between any two non-adjacent
gestures. For the round watch (Table 3a), there were only
three instances of confusion between non-adjacent gestures,
and these were at error rates of only 1%.

There are arguably more scenarios for which a family of four,
as opposed to eight, distinct gestures could be useful. This
is especially true due to the natural mapping of the four ges-
tures as a direction-pad (N, E, S, W). To explore BezelBut-
tons with four gestures (BezelButtons-4), we ran four addi-
tional analyses. We built new models that included only the
N, E, S, and W gestures (BezelButtons-4N) for each of the
two watches. We also built new models that included only
the diagonal gestures (NE, SE, SW, SW) for both watches
(BezelButtons-4NE).

The overall gesture recognition accuracy for BezelButtons-
4 improved further on both watches, as compared with
the accuracy for BezelButtons-8 (see Figure 4). On the
round watch, the gesture recognition accuracy jumped to
98.3% and 99.3% , respectively for BezelButtons-4NE and
BezelButtons-4N, as compared with 92.6% accuracy for
BezelButtons-8. On the square watch, the gesture recogni-
tion accuracy jumped to 99.4% and 99.2%, respectively for
BezelButtons-4NE and BezelButtons-4N, as compared with
92.9% accuracy for BezelButtons-8.

The confusion matrices for BezelButtons-4 appear in Figure
4. All individual gestures were recognized with at least 97%
accuracy, and the only confusion that occurred was between
adjacent gestures (e.g. NE recognized as NW). Although
the recognition accuracies are sufficiently high for all of the
BezelButtons-4 configurations, the N, E, S, W family is ar-
guably a more natural mapping than the diagonal family. On
the other hand, the four corners on the square watch provide
distinct tapping targets for tasks such as a menu selection, but
are not as appropriate for directional interactions.

Tightness and Position on the Wrist
We observed that many people usually wear the watch in one
of two locations on the wrist. Some put the watch closer to
the wrist, while others prefer to keep the watch a bit further
down from the wrist joint, which gives the wrist more flexi-
bility while in motion. In our study, we only tested our tech-
nique for the second position, which was well accepted by the
participants. The majority of participants we observed wore
the watch in the second position. Additionally, if the watch
is worn in the first position, the bone on the joint of the wrist
would be covered by the band, which limits the physical re-
sponse of the inertial sensors to a tap or swipe event. In future
work, we will explore a new model for the first wrist position
with additional training data. In addition, we only tested the
system when the watch was worn on the left wrist. In future

work, we will explore how our model works with a watch on
the right wrist, and determine if that requires separate training
data.

In our study, we also asked the participants to adjust the
watchband to fit tightly to the wrist. We are aware that some
users prefer to wear the watch loosely, in which case, the
watch may slide from the lower arm to the wrist back and
forth while in motion, and thus change the nature of the iner-
tial sensor data stream. A loosely worn style would introduce
some recognition errors in our system, which is one of the
limitations of our technique.

For some people, the comfort of the watch may be an impedi-
ment to use of watch gestures such as the WatchOut family in
real-world scenarios. For example, P3 reported that the Sony
square watch was heating up and the session was too long. In-
terestingly, P3’s results were among the most accurate across
all conditions, ranging from 91.8% to 100.0%.

Personalization
We evaluated recognition performance with user-independent
machine learning models. Though our overall performance
was very good, we did notice poorer performance for some
participants (see Figure 4). One participant commented on
getting tired during the lab experiment and switched to using
his thumb to perform the gestures. Another participant had
a particularly thin wrist and the watchband could not be ad-
justed as firmly as we would have wanted. For these users, we
could consider building user-dependent models for the ges-
ture classification. We would most likely pursue an incre-
mental approach, whereby the user-dependent model could
be augmented with training examples from an individual user,
as demonstrated by Zhang et al. for BeyondTouch [23]. Con-
sidering only the participant sessions where overall accuracy
was less than 84% (8 sessions across 6 unique participants),
we tested how training data from that participant’s session
would impact classification accuracy. We gradually added the
first 0,2,4,8,10 instances of each gesture into the training set
and used the rest for testing. Across all of these 8 sessions,
accuracy increased from an average of 77.9% to 86.0% as
shown in figure 6.

Figure 6: Impact of personalized learning models on classifi-
cation accuracy
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N NE E SE S SW W NW
N 0.90 0.01 0.00 0.00 0.00 0.00 0.00 0.09
NE 0.00 0.96 0.03 0.00 0.00 0.00 0.00 0.01
E 0.00 0.01 0.91 0.08 0.00 0.00 0.00 0.00
SE 0.00 0.00 0.03 0.93 0.04 0.00 0.00 0.00
S 0.00 0.00 0.00 0.04 0.92 0.04 0.00 0.00
SW 0.00 0.00 0.00 0.01 0.05 0.92 0.02 0.00
W 0.00 0.00 0.00 0.00 0.00 0.03 0.96 0.00
NW 0.04 0.01 0.00 0.00 0.00 0.00 0.03 0.92

(a) On the round watch.

N NE E SE S SW W NW
N 0.91 0.07 0.00 0.00 0.00 0.00 0.00 0.02
NE 0.00 0.91 0.08 0.00 0.00 0.00 0.00 0.00
E 0.00 0.03 0.94 0.03 0.00 0.00 0.00 0.00
SE 0.00 0.00 0.01 0.97 0.02 0.00 0.00 0.00
S 0.00 0.00 0.00 0.04 0.95 0.00 0.00 0.00
SW 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.00
W 0.00 0.00 0.00 0.00 0.00 0.04 0.87 0.08
NW 0.01 0.00 0.00 0.00 0.00 0.00 0.10 0.88

(b) On the square watch.

Table 3: Confusion Matrix for BezelButtons

N E S W
N 1.00 0.00 0.00 0.00
E 0.00 1.00 0.00 0.00
S 0.00 0.00 1.00 0.00
W 0.00 0.00 0.02 0.98

(a) BezelButtons-4N (Round)

N E S W
N 0.98 0.02 0.00 0.00
E 0.00 1.00 0.00 0.00
S 0.00 0.00 1.00 0.00
W 0.00 0.00 0.01 0.99

(b) BezelButtons-4N (Square)

NE SE SW NW
NE 0.97 0.00 0.00 0.03
SE 0.01 0.99 0.00 0.00
SW 0.00 0.01 0.99 0.00
NW 0.02 0.00 0.00 0.98

(c) BezelButtons-4NE (Round)

NE SE SW NW
NE 0.99 0.00 0.00 0.01
SE 0.00 1.00 0.00 0.00
SW 0.00 0.00 1.00 0.00
NW 0.00 0.00 0.01 0.99

(d) BezelButtons-4NE (Square)

Table 4: Confusion matrices for variants of 4-gesture Bezel-Buttons on square and round devices

Applications
We have designed and implemented applications that demon-
strate how WatchOut can improve smartwatch interac-
tions.SideTap offers two gestures, which we demonstrate ac-
knowledging or dismissing an alert, such as a phone call.
BezelButtons offers up to eight distinct gestures, which we
demonstrate in an always-available interface for shortcuts to
launch applications. BandSwipe offers an additional modal-
ity for navigation, which we demonstrate in a map navigation
application.

We imagine extending these gesture families to other square,
round, and band-type wearable surfaces: such as belt buckles,
straps, and jewelry, in future work.

PRACTICAL CHALLENGES AND FUTURE WORK
Currently, our current technology was only evaluated in the
lab-based environment and the noise data was collected by
moving the arms and the wrist. Apparently, there are more
challenges we need to address before deploying this tech-
nique in real applications. First, we plan to collect more
data from watch wearers during the whole day and evalu-
ated our system in the real applications in the future. Sec-
ond, WatchOut provides three sets of input gestures, which
was only evaluated separately. In real applications, the user
may prefer to use these three gestures sets interchangeably.
How to switch modalities is another potential challenge. One
solution is to link each gesture set with a separate applica-
tion. Therefore, the certain gesture set will only be detected
when the associated application starts. In addition, we also
plan to explore how to detect the context which could be used
to automatically switch gesture set. For instance, the sound
generated by different gesture sets are different, which could
be used to determine which gesture set should be detected.

CONCLUSION

We have presented WatchOut, a suite of interaction tech-
niques that extend the input modalities on a smartwatch.
WatchOut employs a user-independent gesture recognizer
pipeline, based on data from the accelerometer and gyroscope
embedded in a watch, which can distinguish up to eight dis-
tinct gestures. In a study with twelve participants using both a
round- and square-faced watch, we demonstrated high gesture
recognition accuracy of 88.7% to 99.4%. We then presented
interactive demonstration applications for the SideTap, Bezel-
Buttons, and BandSwipe gesture families, and discussed the
advantages and limitations of using the WatchOut gestures in
real-world scenarios.
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