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ABSTRACT 
C-Face (Contour-Face) is an ear-mounted wearable sensing 
technology that uses two miniature cameras to continuously 
reconstruct facial expressions by deep learning contours of 
the face. When facial muscles move, the contours of the face 
change from the point of view of the ear-mounted cameras. 
These subtle changes are fed into a deep learning model which 
continuously outputs 42 facial feature points representing the 
shapes and positions of the mouth, eyes and eyebrows. To eval-
uate C-Face, we embedded our technology into headphones 
and earphones. We conducted a user study with nine partic-
ipants. In this study, we compared the output of our system 
to the feature points outputted by a state of the art computer 
vision library (Dlib1) from a font facing camera. We found 
that the mean error of all 42 feature points was 0.77 mm for 
earphones and 0.74 mm for headphones. The mean error for 
20 major feature points capturing the most active areas of the 
face was 1.43 mm for earphones and 1.39 mm for headphones. 
The ability to continuously reconstruct facial expressions in-
troduces new opportunities in a variety of applications. As a 
demonstration, we implemented and evaluated C-Face for two 
applications: facial expression detection (outputting emojis) 
and silent speech recognition. We further discuss the oppor-
tunities and challenges of deploying C-Face in real-world 
applications. 
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1dlib Library: http://dlib.net/ 
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CCS Concepts 
•Human-centered computing → Ubiquitous and mobile 
devices; 

Figure 1. Overview of C-Face 

INTRODUCTION 
Humans use facial expressions as a natural mode of commu-
nication. The ability to continuously record and understand 
facial movements can improve interactions between humans 
and computers in a variety of applications. For example, re-
constructing and recording facial movements in a learning 
environment can give instructors useful feedback into stu-
dent engagement levels[55]. In virtual social environments, 
users can have their real-time facial expressions mirrored on 
avatars for more immersive social experiences. Tracking fa-
cial expressions can potentially improve daily communication 
experiences as well. For instance, in order to provide facial 
feedback on a mobile video call, a user must currently hold 
the phone in hand and point the camera towards the face. If 
the user’s facial expression could be automatically recorded 
and presented in a hands-free fashion, communication experi-
ences could be greatly improved in scenarios where the user 
is carrying groceries, doing the dishes, jogging, and more. 

Traditional facial reconstruction methods require a camera 
positioned in front of the user’s face at all times[5] and an en-
tire view of the face without occlusions. These methods have 
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Figure 2. The captured contour images, acquired ground-truth using Dlib, and predicted results of facial expressions used in the user study. The facial 
expressions are rendered using a 3D mesh model © TurboSquid. 

provided reliable facial tracking performance when certain cri-
teria (e.g. position, view angle) are met. However, they have 
limitations in many use cases. They may not work well when 
1) a user is in motion or in an environment where a camera 
can not be appropriately set up or 2) the user’s face is partially 
occluded or is not fully visible due to camera positioning or 
angling relative to the user’s face. The ability to track facial 
movements even when the face is partially covered could al-
low for facial reconstruction use in new settings. For instance, 
it could even be used to track facial expressions under the 
current COVID-19 pandemic when people wear face masks 
during their daily activities. Traditional computer vision based 
technology does not work well in these kinds of settings. 

To overcome the above challenges, researchers have devel-
oped various wearable devices for facial expression recogni-
tion using sensing techniques such as acoustic interference, 
pressure sensing, electrical impedance tomography (EIT) and 
electromyography (EMG) [42, 43, 10]. Compared to the pre-
viously mentioned front-facing camera method, wearable de-
vices are always mounted on the user. As a result, it does not 
require any pre-setup in the environment and has the potential 
to recognize facial expressions in mobile settings. However, 
these wearable technologies also present limitations. Many of 
them require heavy instrumentation on the user (e.g., covering 
the face), making it challenging for them to be adopted into 
common form factors. Also, most of these wearable devices 
can only recognize discrete facial expressions. We do not 
know of a prior wearable technology that can continuously 
reconstruct full facial expressions, capturing the shapes and 
positions of the mouth, eyes and eyebrows. There is a clear 
need for a practical wearable sensing technology that can con-
tinuously reconstruct full facial expressions under non-optimal 
scenarios(e.g., mobile setting, covered face). 

We introduce C-Face, a novel wearable sensing device that con-
tinuously reconstructs facial expressions by learning contours 
of the face with ear-mounted miniature cameras. C-Face is 
designed based on the key observation that facial contours are 
highly informative of facial expressions. When we perform 
a facial expression, our facial muscles stretch and contract. 
They push and pull the skin and affect the tension of nearby 
facial muscles. This effect causes the outline of the cheeks 
(contours) to alter from the point of view of the ear. Based 
on this observation, we developed the key research question 
behind C-Face: 

• Is it possible to continuously reconstruct full facial move-
ments by observing the contours of the face from the ear? 

To explore this research question, we developed our system, 
leveraging the latest advancements in wearable sensing, deep 
learning, and computer vision, while maintaining the mobil-
ity and minimal-obtrusiveness that a wearable device offers. 
To demonstrate the capability of C-Face, we integrated the 
system into two commonplace form factors: headphones and 
earphones. By embedding the cameras near the ear, our system 
is able to continuously reconstruct facial movements repre-
sented by 42 facial feature points without the need for a frontal 
view of the face. A user study with 9 participants (2 of which 
are authors) showed that the mean error for all 42 facial feature 
points was 0.77 mm (SD = 0.1 mm) using earphones and 0.74 
mm (SD = 0.11 mm) using headphones. The mean error for 20 
major feature points around the mouth and eye areas was 1.43 
mm (SD = 0.21 mm) for earphones and 1.39 mm (SD = 0.28 
mm) for headphones. This approach allows us to reconstruct 
the face even when it is partially occluded by a mask or a pair 
of glasses. 

To the best of our knowledge, C-Face is the frst wearable 
technology that is able to continuously reconstruct full facial 
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expressions, capturing the positions and shapes of the mouth, 
eyes, and eyebrows without the need to view the entire face 
directly. The contributions of this paper are: 

• We developed an ear-mounted wearable system, with two 
miniature RGB cameras to capture the contours of the face. 

• We designed and implemented a deep neural networks to 
learn the subtle changes of the contour shapes of the face, 
which outputs 42 facial feature points representing the posi-
tions and shapes of the mouth, eyes and eyebrows. 

• We conducted a user study with 9 participants to evalu-
ate the performance of the system with two form factors, 
earphones and headphones, under different circumstances 
(after remounting and with face mask occlusion) and appli-
cations (silent speech and emoji recognition). 

• We discuss the opportunities, challenges and limitations of 
C-Face for future work. 

RELATED WORK 
In this paper, we evaluate C-Face’s continuous facial recon-
struction performance and explore its applications (i.e. silent 
speech, emoji input) as well. Therefore, we discuss related 
work in three sections: 1) traditional computer vision method 
for facial movement sensing 2) non-CV wearable facial move-
ment sensing and 3) silent speech recognition. 

CV-based Facial Movement Sensing 
Computer vision (CV) is one of the most popularly explored 
approaches on sensing the facial movements. Typically, re-
search in this feld involves placing an RGB camera [45], 
thermal camera [14], or depth camera [41] in front of the face 
and using the captured images for facial movement sensing. 
For facial movement recognition and reconstruction, there are 
two main types of approaches: pre-designed and learned [5]. 
As for the pre-designed method, researchers use conventional 
computer vision methods, such as appearance [52, 60] and ge-
ometry [29], in order to extract relevant information and deter-
mine facial expressions. As for the learned method, machine 
learning-based approaches are used to automatically learn the 
feature extraction and classifcation methods from the training 
data. Deep learning approaches in particular, namely CNN, 
DBN, RNN, and GAN, have demonstrated outstanding per-
formances in recent years. Some researchers have built deep 
learning models focused on discrete classifcation such as [44, 
46, 25] (CNN), [33, 11] (DBN), [6, 3] (RNN), and [30, 58, 56] 
(GAN). Others have succeeded in building models focused on 
continuous reconstruction and analysis such as [28] (RNN), 
[13] (DBLSTM) and [37] (Kernel Regression). 

However, the key issues with traditional CV methods in facial 
movement detection are that 1) it requires a pre-set camera in 
front of the user with specifc requirements for its angle and 
view and 2) the face of the user can not be blocked. In free 
living environments, these are signifcant limitations. 

Non-CV Wearable Facial Movement Sensing 
A number of non-CV wearable methods have also been tested 
to reconstruct facial expressions. For example, Interferi [22] 

built a face mask with built-in ultrasonic transducers and used 
acoustic interferometry to detect facial movements. But the 
on-body acoustic sensing may suffer from performance de-
crease after remounting the device [22, 57]. Other researchers 
[42, 43, 10] secured electrodes to the human face, and used 
electromyography (EMG) or capacitive sensing to track the 
muscles that control the eyebrows and mouth corners. Re-
searchers have also attached pressure sensors onto the face in 
order to sense skin deformation for facial expression recogni-
tion [48, 31]. However, all of the above methods require that 
the devices be attached directly onto the users’ faces or body. 
This could block feld of vision and interfere with normal daily 
activities like eating or socializing. Furthermore, most of them 
only recognize discrete facial expressions. Interferi [22] ex-
plored continuous reconstruction of the shape and position of 
the mouth when the user performs one expression (smiling) 
while covered by a mask. 

Researchers have explored more unobtrusive methods and 
form factors to address this problem and reduce discomfort. 
For example, [36, 1] created an earpiece which ft inside the 
ear canal. The device measured contact impedance and air 
pressure from inside the canal to sense its deformation. They 
then mapped the ear canal deformation to facial movement. 
This paper [35] embedded infrared proximity sensors into 
eye glasses to detect facial expressions. However, despite 
the efforts and successes of these unobtrusive facial sensing 
methods, they are limited to discrete facial gesture classifca-
tion. The lack of continuous facial gesture classifcation limits 
potential applications. 

Silent Speech Recognition 
The idea of a ’silent speech interface’ has emerged and shown 
promise in recent years as a method to aid the handicapped, 
or offer users text input capabilities in high-background-noise 
environments or settings where vocalizing speech is inappro-
priate [8]. Past approaches for silent speech detection can be 
divided into two main categories: contact and non-contact. In 
the contact approach, different sensors (magnetic [17, 4, 47], 
EMG [50, 49], EEG , ultrasonic [27, 24, 20, 7]) are attached di-
rectly onto the face or inside the mouth to detect the movement 
of articulators involved in speaking (i.e. lips, tongue, jaw) to 
recover speech content. However, these contact sensing meth-
ods may interfere with daily activities in real-world scenarios. 
Other researchers have focused on non-contact detection meth-
ods. The non-contact approach often involves positioning a 
camera in front of the face and capturing lip movement to 
recognize predetermined phrases [39, 53]. However, these 
systems still require users to position the camera by either 
holding it in front of their faces or securing it onto something. 
There is a need for a non-contact wearable approach that has 
the potential to detect silent speech phrases. 

Summary 
Compared to these prior projects, C-Face is the frst wearable 
sensing device using minimally invasive common form factors 
that can continuously reconstruct full facial expressions with 
the position and shapes of the mouth, eyes and eyebrows. 
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THEORY OF OPERATION 
In 1996, this paper [38] put forward one of the most infu-
ential facial motion models. In the model, the human face 
is composed of three main layers: skin, muscles, and skull. 
When humans make facial expressions, their facial muscles 
contract and their jaw rotates. The skin, being connected to 
both the facial muscles and bones, gets pushed and pulled as 
these articulators move. This deformation of the facial skin 
alters the contours of the face. C-Face is designed based on the 
above model and observation. FingerTrak [18] demonstrated 
the feasibility of using contours of the wrist to continuously 
reconstruct full hand posture using wrist-mounted miniature 
cameras. Thus, we hypothesize that facial contours are also 
informative to predict full facial expressions. 

To validate the feasibility of our proposed theory, one of the 
researchers fxed a camera under each ear. The researcher 
then made different facial expressions and captured his facial 
contours with the cameras while doing so. As shown in Fig. 3, 
the contours of the user’s face uniquely varied depending on 
the facial expression. We then trained a simple machine learn-
ing model to distinguish between discrete facial expressions. 
With encouraging results, this preliminary experiment veri-
fed that facial contours are informative on predicting facial 
expressions. 

Figure 3. Facial contour images captured in the preliminary feasibility 
test 

HARDWARE AND FORM FACTOR DESIGN OF C-FACE 
In this section, we discuss form factor design considerations, 
present our data acquisition system and an experiment to de-
termine optimal camera positioning. 

Hardware 
To capture facial contours, we had many options for sens-
ing: depth cameras, an array of proximity sensors, thermal 
cameras, and RGB cameras. We intended to fnd a balance 
between practicality and capacity when choosing our sensing 
approach. Depth cameras are very informative, but too bulky 
to be attached to an earphone. The resolution of proximity 
sensor arrays and thermal cameras are too low. Only RGB 
cameras offer enough picture resolution while being compati-
ble with form factors that are small in size and light enough to 
be worn on the ear. Admittedly, RGB cameras are susceptible 
to ambient light and background interference. However, our 
main focus of this paper is to demonstrate the feasibility of 

predicting full facial expressions from facial contours. Other 
sensing methods to capture facial contours can be tested in the 
future. 

We built two types of form factors for our study: headphones 
and earphones as shown in fgure 5. For the headphones, we 
embedded two 14x14mm ArduCAM cameras (OV5647 with 
adjustable focus, auto exposure and a view angle of 120x120 
degrees) into the side earpieces. For the earphones, we secured 
two smaller 6x6mm cameras (OV5647 with fxed focus, auto 
exposure and the view angle of 64 x 48 degrees) to an attach-
ment which slid onto the base of each earphone. Both cameras 
had an image resolution of 640x480 pixels and a frame rate 
of 30 fps. Each camera was connected to a Rasberry Pi board 
which read the images through a CSI interface. Next, we 
transmitted data from the Raspberry Pi boards to the server 
through WiFi or Ethernet for further data processing. Before 
data processing, the server synchronized the images from the 
right and left cameras. 

Form Factor Design and Camera Position Selection 
We conducted an experiment to explore the infuence of cam-
era positioning on facial reconstruction performance. 

Figure 4. The relationship between camera positions/angles and the fa-
cial contours captured, 3D mesh model© TurboSquid 

Pre-experiment Considerations 
Fig 4(a) visualizes a top view of the 3D head model (by Tur-
boSquid 2) with two camera positions shown. The camera 
placed farther from the skin better captures skin deformation 
than the camera placed closer because it has a better line of 
sight to the facial contour (referred to by the and green lines 
in Fig.4(a)). Fig.4(b) visualizes a side view of the head with 
two camera angles shown. Naturally, when the camera tilts 
upward, it better captures the upper part of the face near the 
eye. When the camera tilts downward, it better captures the 
lower part of the face near the mouth. The closer the skin is to 
the mouth or eye, the more apparent its deformation. So, to 
maximize changes in facial contours captured by the cameras, 
it makes sense to keep both the eye and mouth in view. 

Experiment on the Camera Position 
To conduct our experiment, we designed 3D printed head-
phones with adjustable ear pieces to allow the camera’s posi-
tion and angle to be adjusted as shown in Fig. 5. We tested 
three camera distances from the skin (1 cm, 2 cm, 3 cm) and 

2Turbosquid:https://www.turbosquid.com/Search/3D-Models. 

Session 3A: Tracking User's Bodies and Faces Using Cameras
 

UIST '20, October 20–23, 2020, Virtual Event, USA

115

http:thefacialexpression.We


Figure 5. Prototypes of headphones and earphones 

four angles (-10°, -20°, -30°, -40°). For each camera posi-
tion and angle, a researcher was asked to make the same set 
of facial expressions. Images from the 12 different camera 
variations are shown in Fig. 6. The collected data from each 
variation was divided into training and testing datasets to train 
a deep learning model and evaluate its fnal performance. As 

Figure 6. Different facial contours from the perspective of the camera in 
different positions 

the camera moves away from the skin, reconstruction perfor-
mance improves according to the mean square distance (MSD) 
in pixels between our predictions and the ground truth. We 
determined that for our study, a distance of 1.5cm to 2.5cm 
would be an appropriate range. We therefore set the camera 
distance to 2.5cm from the skin for the headphones, and 1.5cm 
from the skin for the earphones. Intuitively, as the camera an-
gle tilts downward, eye reconstruction worsens. As the camera 
angle tilts upward, mouth reconstruction worsens. We found 
that the total MSD reached its minimum value in the range of 
-20° -30°, where the camera images capture the skin around 
both the mouth and eye. We designed and built both form fac-
tors to allow their cameras to swivel upwards and downwards, 
and then set their angles within this range for the user study. 

CONTINUOUS FACIAL RECONSTRUCTION 
With the captured contour images from the ear-mounted cam-
eras, we put forward a CV-based pre-processing method and a 
deep learning model to reconstruct continuous facial expres-
sions. Since our raw data is 2D images, we use a convolutional 
neural network (CNN) since they have shown exemplary per-
formance in image classifcation, detection, and retrieval [26] 
compared to other traditional ML methods. In addition, previ-
ous works have applied CNN to human gesture reconstruction 
tasks (such as hand gestures [18], facial expressions [23], and 
body poses [2]) and demonstrated good performance. There-
fore, we chose to use CNN to reconstruct facial expressions 

from facial contours. We frst introduce the ground-truth ac-
quisition method to our system for training and testing. 

Ground Truth Acquisition 
Defnition of Ground Truth 
CV-based methods using a front-facing camera have achieved 
reliable performance tracking full facial expressions. There-
fore, we set up a frontal camera and used a state-of-the-art 
computer vision library (Dlib library [28]) as our ground-truth 
acquisition method. Dlib library can extract 68 facial land-
marks (feature points). When humans make different facial 
expressions, changes mainly occur in the mouth, eyes and eye-
brows. So, we removed the less informative feature points, and 
selected 42 of the 68 landmarks (outlining the mouth, right eye, 
right eyebrow, left eye and left eyebrow) for our ground-truth 
for continuous reconstruction, as shown in Figure 7. 

Ground Truth Alignment 

Figure 7. Feature points that represent full facial expressions 

One common issue with CV-based methods is that the cam-
era’s view can infuence results. During data collection, if a 
user slightly changes his or her facing direction, the acquired 
ground-truth for the same facial expressions can vary. To over-
come this limitation, we frst align the ground-truth before 
using these landmarks as output labels for training. Because 
changes in head position are relatively small, we regarded any 
resulting landmark transformations as affne transformations. 
To recover original landmark positions, we selected three land-
marks whose relative positions change little when making 
facial expressions (right canthus, left canthus, and the apex 
of the nose as shown in Fig. 7). We then set these three land-
marks fxed in the picture and used them to calculate the affne 
matrix for each ground-truth image. Using this method, we 
aligned the landmark positions to the same range and reduced 
the infuence of head position change during ground-truth 
collection. 

Figure 8. The pre-processing procedure 

Pre-processing Facial Contour Images 
Pre-processing of the captured images is composed of four 
steps, as shown in Fig. 8. First, we convert the raw camera 
image color space from RGB to YCrCb, and apply the Otsu 
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threshold [59] algorithm to extract the skin color from the 
background. Second, we seek out the max contour area (the 
facial contour) and remove other parts (background), which 
can help to decrease the infuence of the background on our 
system’s performance. Third, to reduce the infuence of am-
bient light, we binarize the images after extraction. Another 
merit of binarization is that it can help to reduce the datasize 
of an image (from over 50KB to less than 5KB) during trans-
mission. Lastly, we apply the morphological transformations 
(like erosion and dilation) and median flter to remove noisy 
points and smooth the image. These pre-processed images are 
sent to the deep learning model described below. 

Deep Learning Pipeline 
As described in the preliminary experiments, to capture more 
detailed facial expressions on both sides of the face, we chose 
to use one camera on each side. We divided our ground-truth 
into two parts: left and right, as shown in Fig 9. We used the 
left and right facial contours to train the landmarks of the left 
and right side of the face, respectively. In our deep learning 
model, we implemented two identical deep convolutional neu-
ral networks respectively for estimating the facial landmarks 
on each side. This combination of two models performs better 
than using one model to predict landmarks on both sides. 

Network Architecture 
The deep convolutional neural network has two parts: a back-
bone network and a regression network behind it, as shown in 
Fig. 9. The backbone network follows the same design as the 
18-layer residual network [12] (ResNet-18), which has been 
proven to be highly effective for visual recognition tasks and 
less prone to over-ftting. A convolutional block in ResNet in-
cludes several convolution operations, each followed by batch 
normalization [21] and rectifed linear unit (ReLU). A global 
average pooling is performed at the end of the backbone net-
work to extract a vector representation of each image. Then, 
the extracted feature vector is inputted into the regression net-
work, which consists of two fully connected layers with ReLU 
in between them and a dropout [51] (p = 0.5) before the last 
layer. The regression network outputs the landmarks of either 
side of the face. A matching module then concatenates the 
landmarks from the left and right by matching them to the 
same level using translation and scaling. It then outputs the 
fnal reconstruction result as 84 parameters (42 feature points 
x 2 dimensions for X and Y). Our deep learning model is built 
under the Pytorch framework. 

Training Process 
Weighted Loss Function. Our model was trained with 
ground-truth facial landmarks using the weighted Huber loss 
function [19] to provide a robust regression. The weighted 
loss function is designed to tackle the common issue of im-
balanced data in real-world data collection [40]. Since facial 
movement data is collected in continuous streams, the amount 
of background frames (frames of natural facial expressions) 
is signifcantly larger than foreground ones (frames of other 
facial expressions). 

Data Augmentation When users remount form factors or 
the form factor has a small shifting, facial contours from the 
camera’s POV can change with respect to translation, rotation 

Figure 9. The structure of our deep learning model 

and scaling. We apply data augmentations on the contour 
images in the training set to address this issue. Specifcally, 
we set a probability of 0.5 to conduct certain transformations 
on the images before they are sent to the backbone network 
for training. The transformation can be shifting (range: -20 
to 20 pixels), rotation (range: -10°to 10°), scaling (range: 0.8 
to 1.2) or any combination of these. The distribution within 
each range following a Gaussian distribution (N (µ = 0,σ2 = 
0.01)). 

Training Parameter Setting. We select the following train-
ing hyper-parameters based on the common practices estab-
lished in previous CV research [15]: standard mini-batch 
stochastic gradient descent (SGD) with momentum (0.9), 
weight decay (1e-4), batch size 60, and a learning rate of 
0.01 with Cosine learning rate annealing [34]. For all exper-
iments, our model was trained for 50 epochs on the training 
set, with each epoch being a pass over the full training set with 
random shuffing. The trained model was further evaluated on 
a hold-out non-overlapping test set. 

USER STUDY 
Due to the COVID-19 pandemic, recruiting participants for 
an in-person user study was extremely challenging. After 
discussing with the Institutional Review Board (IRB) in our 
university, we were allowed to recruit the roommates of two 
co-authors as participants in our study. We successfully re-
cruited 7 roommates as study participants. To provide more 
information on C-Face’s performance with different people 
amidst these guidelines, the two co-authors (P1 and P2) also 
participated in this study. They followed the same study pro-
cedure as the other participants. In total, we evaluated C-Face 
with 9 participants in our user study - 6 males and 3 females 
ranging from 21 to 25 years old. 

Session 3A: Tracking User's Bodies and Faces Using Cameras
 

UIST '20, October 20–23, 2020, Virtual Event, USA

117

http:participants.To


Setup 
To begin the study, a researcher introduced the study protocol 
and answered any participant questions. Then, the participant 
sat down in a chair in front of a small RGB camera (Arducam 
cameras (OV5647) 30 Hz, 480 x 640) taped to a monitor for 
ground truth collection. The monitor would be used later to 
play pre-recorded instructional videos throughout the study. 
Next, the researcher adjusted the ground truth camera to a 
suitable position and angle to capture the user’s facial feature 
landmark points. Next, the researcher helped the participant 
put on the earphones (the frst form factor tested). Both the 
left and right cameras were adjusted to ft participants’ face 
size and shape. We frst adjust the camera positions to guar-
antee that each camera can capture the facial contour lines of 
the participant. Then, we adjust pitch angle (around -20°to 
-30°based on our camera positioning study) until the camera’s 
frame can capture the participant’s eye and mouth. For each 
form factor (headphones and earphones) the cameras were 
only adjusted one time before collecting data. Once data col-
lection began, we did not adjust the cameras again. Before 
the study began, the participant was encouraged to practice 
making facial movements to ensure comfort. 

Data Collection 
For data collection, we played a series of pre-recorded videos 
portraying faces for the participant to imitate. We frst tested 
earphones followed by headphones. The earphone data col-
lection procedure consisted of three categories: continuous 
reconstruction, emoji input detection, and silent speech detec-
tion. Data from the last two categories, emoji input detection 
and silent speech detection, were used to conduct a prelimi-
nary applications study which is outlined in the "Applications" 
section. For each category, training data and testing data were 
collected separately in different sessions (training data frst, 
followed by testing data). 

After collecting all training and testing data, the researcher 
reinserted the earphones and ran the continuous reconstruc-
tion testing session again to evaluate remounting performance. 
The researcher then removed the earphones and mounted the 
headphones on the participant’s head. The headphone cameras 
were adjusted the same way as the earphones’. For head-
phones, we only tested continuous reconstruction. Similar to 
the earphones, we remounted them and ran the continuous 
reconstruction testing session again to evaluate remounting 
performance. 

The continuous reconstruction training and testing videos 
prompted the participant to make the following facial expres-
sions as Figure 2 shows: |o:| face (mouth "oh"), |a:| face (mouth 
"ah"), smile without teeth, smile with teeth, |sh| face (mouth 
"sh"), grimace with fat lips, right sneer, left sneer, right wink, 
left wink, raise eyebrows, frown and a combination of both 
eye motion and mouth motion. Figure 2 demonstrates the 
facial expressions rendered by a 3D human face mesh model 
provided by TurboSquid 3. When mapping the facial expres-
sion data to the 3D mesh model, we adjusted the ratio of Dlib 
landmarks to ft with the model. Each expression was sepa-
rated by a neutral, relaxed facial expression. We prompted 
3Turbosquid:https://www.turbosquid.com/Search/3D-Models. 

each expression four times in the training video, and once in 
the testing video. The training video was about 6 minutes 
long and the testing video was 2 minutes. For each participant, 
since our sampling rate is 30 fps, we obtained an average of 6 
x 60 x 30 = 10.8K samples for training and 2 x 60 x 30 = 3.6K 
samples for testing, leading to a total of (10.8K + 3.6K) x 9 = 
129.6K samples. Each sample contains 2 images of both facial 
contours captured at the same time and one frontal image of 
the user’s face for ground-truth labelling. 

CONTINUOUS RECONSTRUCTION RESULTS 

Evaluation Protocol 
To evaluate the continuous reconstruction results, we used 
MSD (Mean Square Distance), calculating the mean of the 
square distances of each pair of landmarks between our predic-
tion results and the ground truth. However, after adopting this 
method we found that many landmarks on more inactive parts 
of the face (like the lower eyelid) move very little (less than 1 
mm) throughout the study. If we were to include all landmarks 
and weigh them equally, our results would be skewed since 
these inactive landmarks have a very low MSD regardless of 
facial expression. Thus, to more accurately represent our data 
quantitatively, we created a new variable called "MMAE (Ma-
jor Mean Absolute Error)" comprised of the more meaningful 
landmarks. To fnd these landmarks, we frst calculated the 
variance of each landmark using the collected ground-truth 
data as Fig. 10 shows. Higher variance signifes a higher 
degree of change for a given landmark during a facial expres-
sion. We then chose the landmarks with the highest variance 
capturing both the mouth and the eye to be considered major 
landmarks, as shown in Fig. 10. We derived MMAE from 
these major landmarks to better represent our results. 

Figure 10. The variance of landmarks during data collection. The ar-
rows indicate chosen major landmarks. 

Since the landmarks are image points, the MMAE unit must 
be converted from pixels to a physical unit. We thus measured 
the positions of the right and left canthus relative to the nose 
apex and combined these values with the alignment to scale 
the landmark positions from pixels to millimeters. 

Continuous Reconstruction Evaluation 
We evaluated our continuous facial reconstruction model on 
all nine participants with both form factors. Across all nine 
participants, our system achieves an MMAE of 1.43 mm (SD 
= 0.21 mm) and an MSD of 0.77mm (SD = 0.1 mm) for ear-
phones, and an MMAE of 1.39 mm (SD = 0.28 mm) and an 
MSD of 0.74 mm for headphones (SD = 0.11 mm). Fig. 11 (a) 
(b) (c) shows the MMAE for mouth motion, eye motion and 
overall face motion for all nine participants with both form 
factors. To give an intuitive understanding of our reconstruc-
tion error, we calculate the MMAE for each facial expression 
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of participant 1 (p1) when wearing earphones and visualize 
the facial expressions with highest MMAE, median MMAE, 
and lowest MMAE as shown in Fig. 12. Additionally, we 
use a gradient to represent the error of each point. We can 
see most error occurs on the eyebrows, upper eyelids and the 
corners of the mouth. Fig. 2 provides a visualization for more 
reconstruction results. We also conducted a one-way ANOVA 
test on the MMAE results between earphones and headphones 
and found no signifcant effect (F(1,16) = 0.006 and p = 0.93). 

Figure 11. The continuous reconstruction results for facial expressions 

Figure 12. The visualization for the expressions of highest, median and 
lowest MMAE of participant 1. 

Form Factor Remounting Performance 
During data collection, the device was remounted on the same 
participant to emulate a real-world scenario. Remounting the 
device can shift the camera positions and lead to adaptability 
challenges for our deep learning model. In the evaluation, 
we test the model after remounting both form factors. Addi-
tionally, to validate our data augmentation method, we train a 
model without data augmentation and test it with the new data 
after remounting. 

The results for the models with and without data augmentation 
are summarized in Fig 13. For the earphones, with data 
augmentation, the MSD after remounting is 1.32 mm (SD = 
0.37 mm) and the MMAE is 2.79 mm (SD = 1.1 mm). Without 

Figure 13. The results of the remounting experiment among 9 partici-
pants. 

Figure 14. The statistical results of the remounting experiment 

data augmentation, the MSD is 1.79 mm (SD = 0.77 mm) and 
the MMAE is 3.59 mm (SD = 1.5 mm). For the headphones, 
with data augmentation, the MSD after remounting is 0.867 
mm (SD = 0.08 mm) and the MMAE is 1.72 mm (SD = 0.24 
mm). Without data augmentation, the MSD rises to 1.10 
mm (SD = 0.15 mm) and the MMAE to 2.14 mm (SD = 
0.26 mm). Fig. 13 visualizes the remounting results (MMAE) 
among different participants and Fig. 14 displays the average 
ΔMMAE of remounting results with a 95% confdence interval. 
The results show that our data augmentation helped to decrease 
the remounting error by 26% for the earphones and 21.2% for 
the headphones. It demonstrated that our system can adapt to 
minor remounting variations for earphones and headphones 
and thus has potential for real world use cases. We ran a 
two-way ANOVA test to study possible effects between data 
augmentation and form factor. We found the main effect on 
data augmentation (F(1,32) = 3.9 and p = 0.05) and the main 
effect on form factor (F(1,32) = 14 and p = 0.001). There were 
no interactions between these two variables (F(1,32) = 0.35 
and p = 0.55). 

There are two elements of our remounting results which need 
further explanation. Firstly, even though the remounting re-
sults are encouraging, if the camera shifts too much (such 
as with participant 2), data augmentation may still not work, 
as the system may not be able to capture enough facial con-
tour. Secondly, headphones performed better than earphones 
in the remounting experiment, and we think this was because 
earphones have a larger freedom of movement compared to 
headphones while being worn. A carefully designed earphone 
to constrain the freedom of movement can potentially alleviate 
this issue. Furthermore, a camera with a wider view could also 
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help address this issue, as it could potentially capture all facial 
contours regardless of the camera’s exact physical orientation. 

APPLICATIONS - EMOJIS AND SILENT SPEECH 
To further evaluate the performance and potential applications 
of C-face, we selected two real-world scenarios using recon-
structed facial expressions provided by C-Face: emoji input 
and silent speech input. Emoji input is an input technique 
whereby users can input emojis into a text message, online 
comment or post by imitating the desired emoji with a facial 
expression. Silent speech is a language interaction interface 
enabling speech-to-text input to take place without the need 
to voice an active acoustic signal. It has the potential to allow 
speech-to-text input in environments where speaking out loud 
may be diffcult due to background noise or uncomfortable 
due to social norms. 

Data Collection Procedure 
As a part of the user study, we collected data for emoji input 
and silent speech recognition from the same 9 participants. 
For emoji input recognition, we selected eight commonly used 
emojis to display in our emoji videos: natural, smile, laugh, 
angry, kissy-face, surprise, sneer and wink. For silent speech 
recognition, we chose eight commands designed to control a 
music player: "play", "stop", "next song", "previous song", 
"volume up", "volume down", "share", and "open lyric". 

Figure 15. The emojis prompted to the participants 

We prompted each emoji and each word 10 times in the train-
ing video, and fve times in the testing video. For the silent 
speech portion of our study, participants were instructed to 
silently mouth commands that were displayed on the monitor. 
For each participant, we collected 15K samples on average for 
training and 6K samples for testing. 

Data processing pipeline 
C-Face is able to predict 42 facial landmarks per frame. This 
allows us to create a data fow containing the landmark clusters. 
To recognize emoji and silent speech input gestures, we frst 
segment the gestures in the data fow and then train a classifer 
to distinguish between various emoji faces or mouthed-words. 

To segment the gestures, we begin by calculating the total 
difference between the predicted landmarks from C-Face and 
the landmarks from a natural facial expression each frame. 
Since facial landmarks change most signifcantly at the peak 
of each gesture (when making a face or mouthing a word), 
a peaking seeking algorithm is applied to fnd the peaks in 
the stream of landmark differences. We then sort out the 
primary peaks, which represent the gestures. These landmarks 
are software-segmented and inputted into the trained BLSTM 
described below. 

Since the extracted events after segmentation are temporal se-
ries with variable lengths, we deploy a two-layer Bidirectional 
Long Short-Term Memory (BLSTM) model [16, 9] followed 
by a fully connected layer with a softmax function to classify 

them. The input of our classifer is a sequence of 42 landmark 
positions from the ResNet, and the output is a one-hot encod-
ing of the facial event class. This BLSTM network was trained 
with batch size 30, stochastic gradient descent (SGD) with 
momentum (0.9), learning rate 0.001 and training epochs 50. 
A similar data augmentation method described in the previous 
section is applied on this labeled data and fed into the BLSTM 
to improve generalizability of the model. 

Evaluation 
Once the data was collected, we used the data from the train-
ing set of each participant to train the deep learning model, 
which was evaluated using the testing set of that participant. 
The average emoji recognition accuracy is 88.6% (SD = 6%). 
and the average silent speech word accuracy is 84.7%(SD = 
7.8%). The confusion matrix of emoji recognition and silent 
speech recognition results are shown in fgure 16 and fgure 
17 respectively. 

Figure 16. The confusion matrix for emoji recognition 

Figure 17. The confusion matrix for silent speech recognition 

These two preliminary experiment results recognizing emojis 
and silent speech phrases validate the possibilities of putting 
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C-Face to use in real-world applications. However, the perfor-
mance is not yet optimal. To better interpret these results, we 
frst compared the results of feeding C-Face data into our ges-
ture recognition protocol with ground truth data using the three 
lowest scoring participants (P2, P4, P6). We did this in order 
to gauge the extent to which inaccurate C-Face reconstructions 
were to blame for the sub-optimal performances. C-Face’s 
emoji recognition accuracy for each of the three users was 
89.76%, 77.05% and 78.9% respectively, while ground-truth 
results were 94.4%, 81.36%, and 83.88%. C-Face’s silent 
speech recognition accuracy for each of the three users was 
77.4%, 70.2% and 80.8% respectively, while ground-truth re-
sults were 77.8%, 67.45% and 73.8%. This indicates that 
gesture recognition performance using C-Face is compara-
ble to direct CV-based methods, which is consistent with our 
continuous facial reconstruction results. 

One possible factor that could have lowered performance is 
our small dataset size. We only required each participant to 
perform each utterance 15 times. If words were mouthed 
differently across utterances, our data may have lacked the di-
versity necessary for our model to accurately classify gestures. 
Also, given the small training data size, other ML models may 
have performed better than BLSTM. In the future we can focus 
on improving our classifcation results. 

DISCUSSION 

System Performance with Face Occlusion 
Traditional CV methods using frontal cameras to reconstruct 
facial expressions are often unreliable if the face is partially 
blocked. For example, a camera pointed directly at the face 
relies on capturing images of the lips to determine the feature 
points of the mouth. If a user wears a face mask, their lips 
are blocked and the system fails to reconstruct their mouth. 
As face mask use increases worldwide amidst the COVID-19 
pandemic, a system like C-Face could be especially practical 
and valuable going into the future. 

Figure 18. The face and facial contours when wearing the mask and 
glasses 

We tested partial facial obstruction with two common wear-
ables: eye glasses and face masks. For facial reconstruction 
data with eye glasses, we simply allowed the participants who 

naturally wore glasses to leave them on throughout the original 
study. After the study, we compared the average results from 
the users who wore glasses with users who did not. 

To evaluate our system’s performance while wearing a face 
mask, we conducted a short follow-up study on fve partic-
ipants in our original study. The study procedure went as 
follows: First, we cut a hole in the center of a face mask so 
that the ground truth camera could collect the facial feature 
points of the nose and mouth. Second, we secured the cut mask 
on the participant’s face. Lastly, we put the earphones on the 
user, adjusted the cameras on them, and ran the continuous 
reconstruction data collection as described in the "User Study" 
section. We demonstrated that the camera views with the cut 
mask (for ground truth collection) and the regular uncut mask 
were the same by capturing pictures of both masks on one of 
the participants. Figure 18 shows that the cut hole had little to 
no effect on the captured image of the facial contours. 

Occlusion from Eye Glasses 
In our user study, we had four participants who naturally 
wore glasses: P5, P6, P7 and P9. For earphones, the average 
MSD of these four users is 0.824 mm (SD = 0.07 mm) and 
the average MMAE is 1.44 mm (SD = 0.19 mm), while the 
average MSD of the other 5 users without glasses is 0.743 mm 
(SD = 0.09 mm) and the MMAE is 1.392 mm (SD = 0.2 mm). 
For headphones, the MSD with glasses is 0.798 mm (SD = 
0.09 mm) and the MMAE is 1.59 mm (SD = 0.26 mm), while 
the MSD without glasses is 0.703 mm (SD = 0.06 mm) and 
the MMAE is 1.24 mm (SD = 0.14 mm). Even though the 
MSD and MMAE of users with eye glasses is slightly higher, 
their overall performance is quite similar. 

Occlusion from a Face Mask 
In our mask blocking experiment, the mask training dataset 
and mask testing dataset of four participants (P1, P3, P5, P6) 
were fed into a deep learning model. Then, we compared 
the continuous reconstruction results of the participants when 
wearing and not wearing a mask. The four participants with 
a mask had an average MSD of 0.717 mm (SD = 0.07) and 
average MMAE of 1.36 mm (SD = 0.28 mm), compared with 
an average MSD of 0.801 mm (SD = 0.068 mm) and MMAE 
of 1.51 mm (SD = 0.24 mm) without a mask. The results show 
that the performance while wearing mask is even a little better 
than the results without a mask. 

These results also demonstrate the strength of C-Face over 
other traditional CV methods. C-Face still provides reasonably 
accurate facial expression tracking even when part of the face 
is blocked. 

User-independent Models 
The results we presented so far use user-dependent models, 
where the training and testing data come from the same partic-
ipant. We started with user-dependent models because contour 
shapes may vary between people. However, this model may in-
troduce a burden as users need to provide training data before 
practical use of the system. 

In order to understand how C-Face performs with user-
independent models, we conducted a follow-up study using 
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the data collected in the earphones user study with 9 partic-
ipants for continuous facial reconstruction. We built user-
independent models, where we used 8 participants’ data to 
train the models, and one remaining participant’s data as the 
testing set. We iterated this process over each participant. The 
average error across 9 participants of our 42 feature points 
(MSD) and 20 major feature points (MMAE) were 1.95 mm 
and 3.78 mm, respectively. The user-dependent model had 
smaller errors of 0.76 mm for MSD and 1.8 mm for MMAE. 
The results for user-independent models still show potential 
for C-Face to perform well on different participants if a larger 
training set can be obtained. 

Power Consumption 
Improving C-Face’s power consumption is a critical step to-
wards real world deployment to conserve battery life. In our 
experiment, we use multiple Raspberry Pis which consume a 
relatively high amount of power (over 2W [32]). It prevents the 
current prototype from an immediate large-scale deployment. 
In future work, we can design the main control board ourselves 
with a low-power MCU, a wireless module, and other chips to 
reduce power use. For example, we could choose ESP, a low 
power MCU with a WiFi antenna (210mW ), which could save 
around 89% of the power used by a Raspberry Pi. 

Additionally, according to [54], lowering camera resolution 
could also reduce power consumption. However, lowering 
image resolutions may reduce facial reconstruction accuracy. 
To investigate this issue, we conducted an experiment where 
we tested four image resolutions (640x480, 320x240, 160x120 
and 80x60) on the data set we collected from the 9 users wear-
ing our earphones in the previous study. The results in Fig. 19 
demonstrate that a lower resolution does lead to a slightly 
lower reconstruction accuracy. But with an image resolution 
of 90*60, C-Face can still reconstruct facial movements with 
a MSD of 0.97mm and MMAE of 1.02 mm. This indicates C-
Face has potential to be a more energy effcient to be deployed 
in real-world devices. 

Figure 19. The reconstruction performance under different resolutions 

Image Segmentation and Different Backgrounds 
We conducted the user study indoors, but have yet to investi-
gate how the system works in different environments. Vary-
ing light conditions and backgrounds can lead to poor image 
segmentation results, so we added noise in the segmentation 
process to address this issue during the training process in 
our experiment. However, this method may not work well 
when segmentation results are far from expected values. In 
the future, we plan to improve segmentation by training a 
deep model with a larger dataset dedicated to segment human 
skin from the environment. Also, we can add more sens-
ing methods for segmentation, such as using a depth camera. 
Depth-cameras are large, but we believe they could become 
small enough to ft into an ear-mounted device in the future. 

Privacy Concerns 
If C-Face is deployed, it may raise serious privacy concerns 
as the cameras can potentially capture information in private 
environments. There are ways to address this issue, like ex-
tracting features on the fy and not saving raw captured images. 
To fully address privacy concerns, we need a much longer 
discussion aside from our main paper topic. We plan to further 
explore this issue in the future. 

Improving Ground Truth Acquisition Method 
Our current ground-truth acquisition method uses a state-of-
the-art computer vision library to track facial expressions. This 
data acquisition method may not be the most accurate way 
to track facial expressions. It is an approximation of actual 
ground-truths, which limits the performance of C-Face. The 
ceiling of C-Face’s performance is set by the performance of 
the CV library we chose. If there is a more accurate method 
for acquiring ground-truth data, C-Face’s performance can 
potentially improve. Our CV-based ground-truth acquisition 
also limits the use cases of C-Face. 

Other Limitations 
Like most CV-based systems, ambient light may infuence 
C-Face’s real-world implementation. The main procedure that 
may be affected is the facial contour extraction when pre-
processing. If the ambient light becomes too bright or dim, 
the face segmentation algorithm may fail, affecting the fnal 
continuous reconstruction result. Also, longer hair can block 
C-Face’s view of a user’s facial contours. This issue could 
lead to inaccurate model predictions of landmark positions 
and in turn result in poor facial reconstruction. 

CONCLUSION 
In this paper, we present C-Face, a minimally intrusive ear-
mounted technology that continuously reconstructs full facial 
expressions by capturing the positions and shapes of the mouth, 
eyes and eyebrows. It uses two miniature cameras to capture 
the contours of the face, which are used to train a deep learning 
model to predict facial expressions. A user study with 9 partic-
ipants demonstrated that C-Face can continuously reconstruct 
facial feature points with an MSD of 0.77mm using earphones 
and 0.74mm using headphones, and an MMAE of 1.43mm 
using earphones and 1.39mm using headphones. When the 
face is partially covered by a face mask or eye glass frame, 
C-Face can still reconstruct the facial feature points with an 
MSD of 0.717mm while wearing a mask, and 0.824mm while 
wearing glasses, and an MMAE of 1.36mm when wearing a 
mask and 1.44mm while wearing glasses. 
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