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ABSTRACT

This paper presents D-Touch, a neck-mounted wearable sensing
system that can recognize and predict how a hand touches the face.
It uses a neck-mounted infrared camera (IR), which takes pictures
of the head from the neck. These IR camera images are processed
and used to train a deep-learning model to recognize and predict
touch time and positions. The study showed D-Touch distinguished
17 Facial related Activity (FrA), including 11 face touch positions
and 6 other activities, with over 92.1% accuracy and predict the
hand-touching T-zone from other FrA activities with an accuracy
of 82.12% within 150 ms after the hand appeared in the camera. A
study with 10 participants conducted in their homes without any
constraints on participants showed that D-Touch can predict the
hand-touching T-zone from other FrA activities with an accuracy
of 72.3% within 150 ms after the camera saw the hand. Based on the
study results, we further discuss the opportunities and challenges
of deploying D-Touch in real-world scenarios.
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1 INTRODUCTION

As recommended by CDC! and WHO?, one critical step to reduce
the risk of infection with COVID-19 is to avoid touching the face
with bare hands since the virus enters through the mucous mem-
branes of the eyes, nose, and mouth (i.e., facial T-zone [36, 49]),
mostly by self-inoculation. However, it is challenging for people
to stop touching their faces since touching the face is a natural
and habitual behavior that many people often practice in a variety
of daily activities. People can touch their eyes, nose, and mouth
more than 23 times an hour [29] based on the result shown in an
observational study. Furthermore, the frequency of touching the
face is an informative indicator of the level of stress [22]. Therefore,
understanding how people touch their faces can potentially help
alleviate multiple important health challenges.

To detect how people touch their faces, the dominant research ap-
proach is to deploy a camera in front of the user to observe the user’s
behaviors. These recorded videos are either manually decoded by
researchers in observational studies[5], or analyzed by computer
vision algorithms 3 4 [5, 34, 39]. Unfortunately, these systems will
not work if the user is not facing the camera or in the context
where it is hard to place a frontal camera(e.g., in motion). To over-
come this limitation, researchers in the wearable community have
developed a variety of wearable-based hand-face touching (HFT)
recognition systems using a smartwatch[11, 21], a wrist band®[71],
rings®, necklace[21], and eyeglasses[40]. These wearable-based sys-
tems enable tracking hand-face touching behaviors in the wild.
However, all of these projects can only identify whether the hand
touches the face only when the distance between the hand and face
is small enough. Such an operation can raise many false-positive
errors in the wild because many daily activities require the user
to raise hands closer to the face, such as putting on earbuds or
eyeglasses, eating, and drinking. People even must hold their hands

1Centers for Disease Control and Prevention, https://www.cdc.gov/coronavirus/2019-
ncov/prevent-getting-sick/prevention.html

2World Health Organization, who.int/emergencies/diseases/novel-coronavirus-
2019/advice-for-public
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close to their faces when they wear masks. Thus, such devices may
falsely record the touching face behaviors when people conduct
other activities after washing their hands.

In order to accurately recognize hand-face touching behaviors
in the wild, the recognition system needs to move beyond binary
classification about whether the hand touches the face. It also needs
to distinguish which areas on the head that are or will be touched
by hands. Recognizing different touch areas can help distinguish
different hand activities around the head. Furthermore, touching
different areas carries different risks to health. For instance, contact-
ing a mucous membrane such as the facial T-zone would introduce
higher risks of transmitting the virus than touching non-mucous ar-
eas such as the chin and cheek. Therefore, it is critical to recognize
which areas are touched by hand.

To address this challenge, we develop D-Touch, a neck-mounted
wearable sensing system that detects when and where the hand
touches the face. The sensing principle of D-Touch is that although
the images captured from the neck do not include the complete
picture of the head, nor directly show which areas are touched by
hands, these incomplete pictures of the head are highly informative
to infer the hand-face touching activities, including whether and
where the hand touches the face. D-Touch uses a neck-mounted
infrared camera (IR), which captures images of activities (e.g., hand
touching face) around the head from the neck. These images are
learned by a customized deep learning model to recognize 17 Face-
related Activities, such as 11 facial areas(e.g., mouth, eye, forehead,
eyebrow, cheek, and chin) and 6 daily activities(e.g., eating, drinking,
and calling), with an average accuracy of 92.1%.

Accurately recognizing where the hand touches the face is the
first step towards alleviating the health risks introduced by hand-
face touching behaviors. In order to reduce these behaviors, many
researchers are developing various behavior intervention technolo-
gies [11, 13, 21, 71]. However, to provide just-in-time intervention,
the system needs to predict the behavior in advance rather than
simply detect the touch behavior. Therefore, D-Touch made the first
effort to predict whether and where the hands touch the face. In our
user study, D-Touch was able to predict 2 hand-face touch-related
activities with an average accuracy of 82.12%, 150 ms after the hand
first appeared in the captured image. To further understand how
early intervention needs to be provided to stop hand-face touching
behavior, we conducted another user study. It showed that if a user
can be notified 150 ms before the hand touches the face, partici-
pants were able to stop the touching behavior with a success rate of
72.1%. This first-of-its-kind study result is preliminary and requires
much more data to draw any conclusion. However, it indicates
the potential of using D-Touch for hand-face touching behavior
intervention.

To the best of our knowledge, D-Touch is the first wearable-
based sensing system that can both recognize and predict where
the hand touches the face, and it is also the first study that explores
how early the system should predict hand-face touching behavior
in advance for proper intervention. The contribution of this paper
is:

e We implemented the first wearable system that can distin-
guish a rich set of hand activities around and on the face,
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including 1) 11 touched areas on the face; 2) 6 other activi-
ties in which hands are close to the face, and 3) other daily
activities.

e We made the first attempt to predict the areas of touching
on the face in advance before the touching actions happen,
which offers potential future opportunities for behavior in-
tervention.

e We conducted user studies to evaluate the performance of the
system which showed promising accuracy in both recogniz-
ing and predicting a variety of hand-face touching activities
in both lab settings and in the wild (10 participant’s homes
without limiting participant’s behavior).
for recognizing and predicting the hand-face touching be-
haviors with 10 participants in the wild (their homes without
any constraints).

e We discussed the limitations of the current system and the
challenges and opportunities of applying D-Touch at scale
in real-world applications.

2 RELATED WORK

This section reviews the literature related to hand-face touching
behavior and discusses existing sensing technology for detecting
hand-face interaction with non-wearable or wearable devices.

2.1 Hand-face touching behavior

Touching the face with hands is a common and sometimes uncon-
scious behavior. There are various reasons why people touch faces
with their hands, such as people’s habitual characteristics (e.g., rub-
bing eyes, scratching nose, curling fingers against mouth, twirling
mustaches) [29, 42] or behavioral disorders like Onychophagia
[63]). Furthermore, people tend to stroke the chin while listening
to others, pondering questions, or expressing embarrassment or
fatigue [22, 37, 38, 44]. Additionally, a few observational studies
have conducted experiments and showed that people touch their
face between 9 to 54 times on average per hour [1, 2, 5, 8, 11]. For
example, in [29], an average count of 23 face-touches per hour is
observed on 26 students. Similarly, in another study [2], ten subjects
were recruited to perform office-type work in controlled setting
for three hours. The video was recorded and manually analyzed,
which showed on average, each participant touched their face for
15.7 times. However, these studies review the hand-face touching
behaviors by manually analyzing the video data, which is not ef-
ficient and can not be largely deployed to collect the hand-face
touching behavior data. To comprehensively understand human
hand-face touching behavior, researchers seek to build computing
technologies to track when, where, and how the hand touches the
face in daily activities.

2.2 Hand face touching detection with
non-wearable-based approach

Frontal cameras have been used extensively in the computer vision

(CV) field to study people’s facial movements [58, 66, 72] and hand

gestures [41, 65] as two separate topics. Researchers have developed
both classical methods based on hand-crafted features [1, 8, 23, 27,
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28,35, 46,47, 60, 67, 68], and deep-neural-network-based algorithms
[33, 45, 61, 62] to detect human faces in images captured by a frontal
camera. Moreover, researchers apply various CV algorithms on
images or videos to detect, track, and recognize hand gestures [3, 14—
18, 30, 51, 70] that are static [19, 50, 52] or dynamic [12, 57, 64].

Hand-over-face occlusion is a challenging problem for face de-
tection researchers in the CV field, as facial features may be er-
roneously detected or lost because of occlusion. To address this
issue, researchers in [39] tried to learn gesture descriptors such as
hand shape, hand action, and occluded facial region. Similarly, [5]
provides a large-scale annotated data set for hand-face behaviors
in social interaction and a CNN model for detecting touching ac-
tions with an accuracy of 83.76%. Additionally, in [34], researchers
built a novel input modality for interaction with smartphones with
hand-over-face gestures. Due to the recent COVID-19 pandemic,
researchers have started paying more attention to detecting hand-
face touching behavior with frontal-camera-based vision methods.
For example, the website "Do not Touch Your Face"” use images
from a webcam to determine whether the user is touching his face.

However, because hand-face touching (HFT) is a deeply ingrained
and highly unintentional behavior that happens irregularly every
day, it is impossible to deploy a frontal-camera to detect HFT con-
stantly in people’s daily life. Moreover, the frontal-camera-based
methods usually requires a suitable view-angle and lighting condi-
tion, which is limited in many human activities.

2.3 Hand face touching detection with
wearable-based approach

Along with trying to understand human behavior, researchers also
build wearable devices to track activities and then support user
self-awareness and intervention [55]. For example, Fitbit+ is used
to reduce sedentary behavior [48], and various devices have been
used to detect eating behavior for avoiding unhealthy weight gain
[75]. Furthermore, because of the COVID-19 pandemic, people have
started paying more attention to hand-face interaction behaviors.
Because of this increased awareness, we must develop wearable
devices for users to track their touching behavior.

Researchers have developed various systems using sensors in
wearable devices to address the limitations of detecting hand-face
contact with a frontal camera. For example, Face Guardian® uses a
magnet on the wrist and phone that has compass ability placed on
the neck to detect the distance of hand to face by measuring the
magnetic field. It will provide vibration and audio alerts every time
the app detects there is one touching action. Similarly, researchers
in the Saving Face project’ and [21] built devices by analyzing
electromagnetic or capacitive fields between a transmitter ring or
a bracelet on hand and the receiving sensor around the face or on
the neck. Another solution proposed by researchers in Saving Face
project is developing an HFT notification app by monitoring ultra-
sonic frequency changes from earphones. Likewise, NoFaceContact
[71] utilizes near-field communication (NFC) with the reader on
the wrist and a tag on the ear. However, these devices need two
sensors wearing on the neck and wrist, respectively. Researchers

"https://lazerwalker.com/dont-touch-your-face/
8https://matter.childmind.org/face-guardian.html
https://www.media.mit.edu/projects/saving-face/overview/
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also provide solutions with only one smartwatch to detect HFT
behaviors by investigating the data from accelerometer [11, 56],
inertial and magnetic sensors [21] or gravimeter '°. TouchAlert[56]
utilizes the sensors found in common wearable devices to train a
deep learning model for predicting variable length face-touching
at an early stage of its occurrence. Recently, FaceSense [26] uses
multiple sensors, i.e., thermal and physiological sensors, to detect
touches and recognize the facial zone of the touch.

Nevertheless, these devices all work on identifying when a hand
comes closer to the face rather [11, 21, 26, 56] than detecting fine-
grained hand-face touching behaviors. People sometimes hold their
hands up not to touch the face but to do other activities like drinking,
eating, and wearing glasses. Previous devices will mistakenly keep
recording touching actions for these activities, despite them not
being dangerous. Furthermore, identifying and predicting areas
that people are touching is essential because touching facial areas
like the eyes, nose, and mouth will raise the probability of infecting
with the virus compared to other parts of the face. D-Touch is the
first wearable technology that can recognize and even predict areas
that the hand touches.

3 D-TOUCH

In this section, we discuss the goals and principles of designing a
wearable system that can address our research question.

3.1 Design principle

Our goal is to design a wearable technology that can accurately
recognize and predict which areas the hand touches the face. In
order to capture the hand activities around the head, we decide to
use IR cameras.

Most of the existing camera-based solutions would place the
camera in front of the user to capture the face, which has two
limitations. First, if the camera is set up in the environment, it
may not work well when the user is in motion or does not face
the camera. Second, it can only work when users wear/hold the
camera in front of the face, which is inconvenient and less socially
appropriate. Moreover, it is unable to track throughout the day
continuously.

We consider several form factors and positions for the camera
inspired by previous research (i.e., cap [54], headphones [10], neck-
lace [9], chest-mounted camera [7, 25], shoes [4], and wristband
[24, 31]). We evaluate different positions and form factors for our
device with the design goals in mind, including a camera on a hat,
on the chest, on a watch, and headphones. We decide to place the
camera on a neck-mounted form factor for several reasons: 1). Plac-
ing the camera on the neck would offer the best view to observe
the hand activities around the head without much occlusion. 2).
People have already used to wearing decorations or devices around
the neck, such as necklace, and neck-mounted Bluetooth speakers.
People are more acceptable to wear smart neck-mounted wearables.
3). A neck-mounted device would offer larger space for design and
can carry relatively larger weight, compared to other locations (e.g.,
ear), the space in front of the neck offers a large flat surface, which
can steadily hold a relatively larger device (e.g., with larger battery).

Whttps://immutouch.com/guard
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The Front View of D-Touch The Side View of D-Touch

Prediction Prediction Detection

Prediction and Detection on Hand Face Touching Behavior

Figure 1: D-Touch: A tie-clip wearable device using an IR camera (i.e. LeapMotion). By pointing a camera toward the face from
the tie clip, D-Touch is able to capture hand-face touching(HFT) behaviors for recognition and prediction.

After choosing the neck as the position of a wearable device, we
further examine different neck-mounted form factors. We decide to
attach the camera to a clip (e.g., tie-clip). This allows our device to be
used in a similar manner as a brooch, as people could easily remove
and attach the device throughout the day. Furthermore, by pointing
the camera toward the face from the tie clip, the camera would
only capture the neck and part of the face (e.g., chin, jaw), which
contains less privacy about the user and surrounding environment.

In the end, we evaluate different options for cameras, including
RGB camera, depth camera, and IR camera. RGB cameras would
offer high resolution on images with minimal weight and size. How-
ever, segmenting the human body from different backgrounds in
RGB images is still a challenging task in computer vision. Depth
cameras would help separate the human body from the background
in the depth images. Nevertheless, the current depth cameras’ size
and weights are too large, making them inappropriate as a neck-
mounted wearable. As a result, we chose Infra-red (IR) camera,
which emits the IR lights to the human body and receives the re-
flected IR lights from the body in the images. It perfectly satisfies
our needs. On the one hand, it is relatively easy to segment the hu-
man body from the background. On the other hand, the dimension
and weight of existing IR cameras are small enough to fit nicely
into a neck-mounted wearable (e.g., tie-clip).

As a result, we developed D-Touch that uses an IR camera as
the sensing device attached to a tie-clip. To assess the likelihood
of using D-Touch, we conducted a small online survey with 22
participants. Participants ranged from students to working pro-
fessionals and had an age range of 19 to 45 years old. Of the 22
participants, 15 (68%) said that they would consider using D-Touch
given certain conditions such as reduced privacy concerns, comfort,
and affordability. However, if D-Touch offered additional health fea-
tures, such as eating tracking or hand-face touching intervention,
20 participants (90%) expressed their willingness to use it. The sur-
vey results showed that a neck-mounted form factor for D-Touch
has the potential as a health-tracking device.

In the following sections, we will present how we use this neck-
mounted sensing device for 1) recognizing and 2) predicting whether
and when the hand touches the face.
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3.2 Research Idea and Questions

With our form factor, i.e., a neck-mounted tie-clip device, we ex-
plore the possibility of detecting which parts of the face are being
touched. We conducted a preliminary experiment by attaching an
RGB camera to the neck. As shown in Figure 2, we find that the im-
ages captured by the neck-mounted camera are highly informative
on the hand positions (e.g., nose, mouth, chin, cheek, eye, eyebrow,
and forehead) and other daily activities related to the face (e.g., eat-
ing, drinking, and calling). Therefore, we suspect that the images
of the face captured from a neck-mounted camera can be used to
distinguish whether and where the hand touch the face. Also, we
found that our hands in the captured images have both a different
hand shape and trajectory depending on the hand-face behavior,
indicating that we can potentially predict which face area is about
to be touched before the hand touches the face. In order to provide
the necessary intervention to stop users from touching their faces
with hands, we need to predict their behaviors as early as possible
before hand-face touch occurs. Based on the findings, we proposed
key research questions on hand face touching classification and
prediction behind D-Touch:

e Research Question 1:Is it possible to classify and predict
hand face touch behavior with sequence images of the face
and a hand captured by a camera-mounted tie-clip device
on the neck before the hand touches the face?

e Research Question 2: How early D-Touch should predict
the HFT activities to provide proper intervention to stop
touching the face with the hand?

4 SYSTEM DESIGN

To answer our research questions, we design the D-Touch with a
prototype, image preprocessing, and deep learning algorithms. Fig
4 shows the overview of D-Touch.

4.1 Prototype

Wearing an IR camera on the neck could provide obvious differ-
ences in image appearance when hands touch the face in various
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Figure 2: Hands in the captured images have both different hand shape and trajectory depending on the hand ace behavior.
Thus, it would be possible to classify and predict when and where the user is about to touch their faces using images captured

before the initial contact.

ways. Here, we use LeapMotion!! for classifying and predicting
the HFT behaviors. The rationale for using LeapMotion is to cap-
ture the hand as early as possible so that we can acquire maximal
information of the hand as it moves. LeapMotion’s wider field of
view and longer tracking range (i.e., FoV : 140 x 120 degrees and
Tracking Range: 60 to 80 cm 12) helps to capture the hand earlier
than a camera with a narrower view would. Also, with the help of
an advanced IR light source and an IR filter, LeapMotion is able to
adjust the direction of the lens toward the space in front of the face
with the least amount of background noise.

The sensing method of LeapMotion employs pattern-less IR light
on the object and IR camera to capture IR images. LeapMotion
utilizes more advanced hardware (two monochromatic IR cameras
and three brighter IR LEDs) and an advanced exposure strategy and
algorithm. Thus, it has a wider field of view and longer tracking
range (i.e., 140x120° typical field of view and depth of up to 60cm
(24") preferred, up to 80cm (31") maximum), allowing for earlier
capturing of the hands, along with less lighting issues. LeapMotion
is connected to a laptop via CSI interface using a 3 meter long USB
2/3 hybrid cable and transmits data with a resolution of 150x150 at
40 fps. The camera module is also encased in a 3D printed shirt-clip.
The shirt-clip case, along with the camera module, can be secured at
the top of the participant’s shirt, with the camera pointing upward
towards the participant’s chin, as shown in Figure 3.

4.2 IR Image Processing

The primary purpose of image processing is to reduce noise and
other interfering factors by using image preprocessing algorithms
to help subsequent neural networks improve inferring ability and
generalization by data augmentation techniques.

Image Preprocessing: As shown in Figure 1, LeapMotion provides
infrared-format data as a grey-scale image. We utilize the resized
gray-scaled images (150x150) from LeapMotion without particular
image preprocessing as input data for our deep learning pipeline.

Data Augmentation: Camera shifting is an important issue for
any wearable camera. Shifting leads to a significant variance in

Uhttps://www.ultraleap.com/product/leap-motion-controller/
2https://www.ultraleap.com/company/news/blog/how-hand-tracking-works/
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A side view of a user
wearing LeapMotion

A front view of a user
wearing LeapMotion

Figure 3: Experiment setting with LeapMotion. The clip is
placed on the participant and the camera is pointed toward
the chin.

images, which may ultimately fail our image analysis algorithms.
For example, walking poses a particular challenge, as the camera
position and angle shift with every stride. The camera also shifts
whenever the user remounts the device. Although we try to improve
the camera’s stability with a suitable form factor design, movement
is inevitable throughout daily activities. Therefore, we deploy data
augmentation techniques to simulate such changes by manipulating
the data. More specifically, we drop a probability with Gaussian
distribution to decide whether to conduct translation, rotation,
scaling or any combination of these three on the images before
feeding them into the model in each epoch. The threshold of the
Gaussian probability model we decide to augment is 0.5. The range
of each manipulation is translation range from -30 to 30 pixels,
rotation range from —20° to 20°, and scaling range from 0.8 to 1.2,
respectively.

4.3 Deep Learning pipeline

In this section, we introduce the structure and training configura-
tions of our deep learning model TouchNet, the framework being
a combination of convolutional neural network (CNN) and Long
short-term memory (LSTM). We define two sub-models: the CNN
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Deep Learning Model

CNN }LSTM ]

17 FrA Gesture

Classification

Figure 4: System Overview: D-Touching consists of three parts: Prototype, Image Preprocessing, and Deep Learning model

model for feature extraction and the LSTM model for interpreting
the features across time steps.

Image-related tasks using CNN have achieved significant ad-
vances in recent years [6, 32, 53, 74] like hand gesture recognition
[41, 65] and facial expression recognition [58, 66, 72]. As VGG 16
[59] has demonstrated its performance to be highly effective for
many image tasks, which is also easy to achieve convergence, we
chose VGG 16 as the backbone of TouchNet for our image classifica-
tion task. Next we deploy an LSTM model to handle the time series
data followed by a fully connected layer with a softmax function to
classify FrA gestures.

4.3.1 TouchNet Architecture. : TouchNet is composed of two main
parts: the backbone based on VGG 16 and LSTM, and a classification
block. The VGG 16 backbone of TouchNet consists of five blocks,
with the first two blocks having two convolutional layers and a max-
pooling layer, and the last three blocks having three convolutional
layers and a max-pooling layer. All the convolutional layers have a
kernel size of 3 X3 and use "same" padding, ensuring that the spatial
dimensions of the feature maps remain the same after convolution.
The convolutional layers are followed by rectified linear unit (ReLU)
activations, which introduce non-linearity into the network. Max-
pooling layers are used to reduce the spatial dimensions of the
feature maps while retaining the most important information. The
max-pooling layers have a kernel size of 3 X 3 and use "valid"
padding, meaning that the output size is smaller than the input size.
The TimeDistributed layer is used to wrap the entire sequence of
CNN layers, integrating the CNN and LSTM models for improved
performance in recognizing hand-face touching gestures. The fully
connected layers are then used to learn high-level representations
of the input data, with a dropout layer (probability=0.8) placed
between each pair of fully connected layers to prevent overfitting.
Finally, a Softmax layer is used to produce the final prediction, with
17 units corresponding to 17 facial-related gestures shown in Fig 5.

4.3.2  TouchNet Training. : We built the deep learning network
under the TensorFlow framework. During the training process, the
hyper-parameters we chose are listed as follows: gradient descent
optimizer with a learning rate of 0.01 and batch size of 30. When
training the network, we first use the model pre-trained on Ima-
genet dataset [20]'3 to accelerate the training process. We then
resize the images to 150 X 150 to meet the input requirement of

Bhttps://github.com/tensorflow/models/tree/master/research/slim
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the VGG16 network. Then we wrapped the VGG 16 network for
LSTM by using the Time Distributed layer. We randomly shuffle
the data, divide the data into several batches and train the model
with 500 epochs for all participants. For training the model, we use
our server with the GPU (AMD Thread- ripper 3960X CPU and
RTX2080Ti GPUs with 256GB memory). Lastly, we evaluate the
performance of the length of the input image sequence. Since our
data sample is limited, we use a 5-fold cross-validation evaluation
where 80% of data were used as the training and the last 20% as the
testing data. Five models are trained and evaluated with each fold.

5 EVALUATION

In order to evaluate how D-Touch can distinguish and predict Face-
related Activities (FrA), we conducted a user study with 10 partici-
pants with three experiments: 1) 17 FrA classification and prediction
in a controlled study setting, 2) an intervention study where we
evaluated how early intervention is needed to stop face-touching
behavior, and 3) the in-the-wild study at participants’ home where
we study how D-Touch would recognize and predict FrA in the wild.
Each experiment was conducted under safety procedures approved
by the Institutional Review Board (IRB) of the authors’ institution
and completed within 100 minutes.

5.1 Participants

We recruited 10 participants for three experiments, with 3 of them
being female. Their ages ranged from 18 to 35, and the average age
was 26.1 (SD: 4.1). All participants completed all three experiments
without any issues. There were 3 participants with long hair and
1 participant wearing glasses, while there were no left-handed
participants.

5.2 17 Face-related Activity

We consider 17 Face-related Activity for classification and predic-
tion to validate D-Touch. To define fine-grained hand-face touching
activities, we first consider where people touch the face with hands
according to the previous and CDC’s guidelines, and then we divide
the face into 11 areas including facial T-zone (i.e., eyes, nose, and
mouth) and other facial areas (i.e., forehead, cheek, and chin) as
shown in Figure 5. Moreover, we aim to differentiate hand-face
touching from other face-related activities which may bring hands
close to the face but do not involve direct touching. We choose
6 common daily activities: 1) eating, 2) drinking, 3) calling, and
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Figure 5: The 11 Facial Areas and 6 Common Daily Activities related to the Face.

touching 4) the neck, 5) ear, and 6) hair. These six activities are
included in our study to avoid false positive errors in detecting
hand-face touching.

5.3 Device Setup and Study Location

For data collection on D-Touch, participants were asked to wear a
clip-shaped device with Leap Motion camera on the collar of their
shirts as shown in Fig 3. The researcher then helped the partici-
pants adjust the device to a fixed position and fine-tuned the device
to a suitable angle to capture images of the face. Since all exper-
iments require participants to touch their faces with their hands,
the experiments were conducted in participants’ homes to avoid
the risk of exposure to COVID-19. Also, participants were asked
to wash their hands carefully before conducting the experiments.
Each experiment was conducted under safety procedures approved
by the Institutional Review Board (IRB) of the authors’ institution
and completed within 100 minutes.

For the in-the-wild data collection, the device was connected to a
laptop using a 3-meter-long wire, allowing the participants to move
freely in their homes within a radius of 3 meters. Furthermore, the
researcher was not present in the experiment, which allowed the
participants to freely conduct activities at home. All participants
reported that although they had limited space to move around due
to the wire, they did not find it difficult to move around their home
while wearing the device with the long wire.

5.4 Experiment 1. Classifying and predicting 17
FrA gestures
To evaluate how D-Touch recognizes and predicts these FrA ges-

tures, we collected data on 17 FrA gestures from ten participants in
a controlled setting at their homes.
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5.4.1 Procedure. The study was conducted at the participant’s
home. Participants were asked to sit in front of the table. We placed
a screen in front of the participants to display the instruction for the
actions that the participants need to perform. To simulate FrA ges-
tures in the real world, participants were asked to perform gestures
with two hand types (i.e., the left and right hand) respectively in
random order by following the video instruction. In addition, to col-
lect various images of hand shapes when performing FrA gestures,
we asked participants to perform each gesture twice consecutively
with different hand poses.

5.4.2 Data Collection. Participants repeated five times for each
gesture, which lead to 10 samples per each gesture (2 different hand
poses x 5 times). The order of each gesture was randomized. The
340 gestures were collected per participant ( 17 FrA x 2 hand types x
10 samples) with about 56,000 image frames (40 fps x 60s x 20 m). As
aresult, we collected 3,400 gestures with about 560,000 images from
ten participants. This experiment took about 25 minutes including
a practice session.

5.4.3 Labeling for Ground Truth. The labeling for ground truth is
done manually for all participants in this study. We used another
front-facing camera to record which parts of the face they touched
and when the touch occurred. For a hand touch gesture, we label all
frames in that segment (from the first frame shown in the camera
to the last frame when the hand disappears). We pay more attention
to the frames for the prediction task before the touching action
happens.

5.4.4 Result. We first present the statistical analysis of how long
it takes for participants to perform the 17 FrA gestures after the
hands enter the camera frame. The hand appearing at the top of the
frame was determined by using a threshold. Then, we report the



U1 °23, March 27-31, 2023, Sydney, NSW, Australia

Lim, Hyunchul et al.

® Intervention Sucess = 17 FrA Gestures 4 T-zone vs Others

100%

90% 85% 86% 87%
80%
70%
60%

50%

Accuracy

40%

30%

20%

10%

0%

97%

93% 94%

S %QQ fg{lf" ,5639 ,516 D«QQ bﬂf‘) 0‘60 b:(‘.) 6°Q ‘:)7'6

Milliseconds (ms)

Figure 6: A trade-off between accuracy and intervention success

performance of our models in classification and prediction using
different lengths of image input (5 to 20 images), evaluated with 5-
fold cross-validation. The best input length for the classification task
was found to be 20 sequential images (500ms), as no improvement
in performance was seen with shorter or longer input lengths.

Table 1 summarized the statistical values of performing FrA
gesture. On average, it took 425.6 ms to perform FrA gestures (SD
= 121.4 ms, ranges = 250 - 950 ms). We found that it took a shorter
time to detect the moving hand that was touching the parts of the
face that is further away from the camera such as the forehead. In
addition, it also showed that the moving speed of the hand was
much slower in other non-face touching behavior such as eating,
drinking, and calling than the movement speed of the hand when
touching the face.

The result showed that D-Touch was able to distinguish the 17
FrA gestures with an average accuracy of 92.1% within about 500 ms
after the hand appeared in the camera. As shown in Fig 6, the initial
accuracy seems when only using the first couple of frames after the
hand shown in the camera, as it contains less information about the
moving trajectory of the hand. But the accuracy increased when
the model see more frames of hand in the camera. The accuracy
increased to 92% on 17 FrA activities within about 500 ms after the
hand appeared in the camera, indicating that our technology can
be used in tracking people’s hand-face touching behavior in detail
for their health.

In real-world scenarios, it may not be necessary to distinguish all
17 activities. For example, the most important category for COVID-
19 prevention is to distinguish T-Zone v.s. other activities to prevent
their hand-face touching activities. In this case, D-Touch can distin-
guish hand-touching T-Zone vs other activities with an accuracy
of 85.9% within 200 ms as shown in Table 2. This indicates that
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D-Touch has the potential to provide prediction in advance for
intervening in the hand-face touching behavior. However, it should
be noted that there is a trade-off between accuracy and the time
to predict touching T-zone as such prediction should be used to
give users intervention to stop touching the face with their hands
appropriately. We will explore the appropriate time for the inter-
vention study in Experiment 2. Figure 7 summarizes the result on
D-Touch using a confusion matrix.

5.5 Experiment 2. Intervention Study

The ultimate goal of our prediction on FrA is to provide intervention
for stopping touching the face in advance, especially the facial T-
zone for safety. Here, we investigated how early the intervention
needs to be provided in order to allow the user to stop the hand-face
touching behavior. This experiment was conducted in a controlled
setting after Experiment 1 at the participant’s home.

5.5.1 Procedure. In this experiment, we asked participants to sit
in front of the table and then touch the mouth or nose with their
dominant hand wearing D-Touch using different hand poses. Com-
pared to touching other facial areas in T-Zone, touching the nose
or mouth takes the shortest time (an average of about 450 ms). We
developed a system using D-Touch which can recognize when the
hand appeared in the camera. We gave an alarm sound to the par-
ticipants at 12 different time points (25, to 500 ms) after the hand to
appeared in the camera. The participants were instructed to stop
the hand movement as soon as they hear the sound. If the hand
touched the face, we counted it as a failed intervention. Otherwise,
we counted it as a successful intervention.

5.5.2  Data Collection. Each participant repeated the touch behav-
ior 10 times at each time point (12 in total). The order of the time
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Label #1 Sample | Mean  SD Min Max Median Label #2 Accuracy

Total 3400 425.6 121.4 250.0 950.0 425.0 - 96.1

Left Eye 200 502.5 65.0  400.0 600.0 512.5 Facial T-zone 100.0
Mouth 200 477.5 54.6  400.0 575.0 487.5 Facial T-zone 81.0
Nose 200 375.0 63.5  250.0 450.0 362.5 Facial T-zone 85.0
Right Eye 200 392.5 37.4  350.0 450.0 387.5 Facial T-zone 85.0

Calling 200 487.5 719 3750  625.0 500.0 Other Activities 100.0
Chin 200 422.5 53.3 350.0  500.0 425.0 Other Activities 88.0

Drinking 200 760.0 63.7 675.0  850.0 762.5 Other Activities 100.0

Eating 200 617.5 98.6 500.0 750.0 587.5 Other Activities 100.0
Hair 200 395.0 49.7 300.0 475.0 400.0 Other Activities 92.0

Left Cheek 200 462.5 445 4000 550.0 450.0 | Other Activities 100.0
Left Ear 200 392.5 47.2 325.0 475.0 400.0 Other Activities 92.0
Left Neck 200 362.5 82.7 300.0 575.0 325.0 Other Activities 90.0
Left Forehead 200 4350 146.8 350.0 850.0 400.0 | Other Activities 92.0
Right Cheek 200 402.5 399  350.0 475.0 387.5 Other Activities 92.0
Right Ear 200 392.5 40.9  325.0 475.0 400.0 Other Activities 85.0
Right Neck 200 407.5  200.0 275.0 950.0 337.5 Other Activities 96.0
Right Forehead 200 4625 1459 3500 850.0 425.0 | Other Activities 96.0

Table 2: Evaluation on D-Touch: Accuracy, Recall, Precision, and F-score from Experiment 1 and Intervention Accuracy
(percentage - %). Time: time was recorded after the hand shown in the camera. ms: milliseconds.

17 FrA Gestures T-zone vs Others Intervention
Time Accuracy Recall Precision F-score Accuracy Recall Precision F-score | Success Rate
25 ms 29.4 29.4 0.0 0.0 61.2 60.3 59.2 59.8 94.2
50 ms 324 32.4 0.0 0.0 64.7 53.9 77.9 63.7 90.1
75 ms 33.8 33.8 0.0 0.0 61.8 51.2 77.3 61.6 89.8
100 ms 41.5 42.2 46.9 44.4 76.5 72.3 75.6 73.9 88.2
125 ms 52.9 52.9 55.2 54.0 78.8 76.4 77.7 77.1 79.2
150 ms 56.4 58.8 57.9 58.3 82.1 75.5 79.8 77.6 72.1
175 ms 60.3 60.3 65.7 62.9 85.3 75.2 81.3 78.1 69.5
200 ms 68.8 65.3 69.9 67.5 85.9 78.5 80.9 79.7 63.3
225 ms 72.1 72.1 75.6 73.8 86.8 80.5 82.0 81.2 59.9
250 ms 83.8 83.8 86.3 85.0 92.7 90.9 89.2 90.0 54.1
375 ms 83.8 83.8 83.8 83.8 94.1 94.0 90.7 92.3 21.0
500 ms 92.7 93.0 93.3 93.1 97.1 96.2 96.7 96.4 0.0

points was randomized. In total, we collected 120 samples per par-
ticipant (12-time points x 10 repetitions) with about 27,000 image
frames (40 fps x 60s x 10 m). We collected 1,200 samples in total
with about 270,000 images from ten participants. The experiment
took about 15 minutes including a practice session.

5.5.3  Result. Overall, the intervention study showed that for 150
ms notice in advance (input length = 6 image frames), the partici-
pants were able to stop their face-touching activity with an average
success rate of 72.1%(SD = 4.1 %). As shown in Fig 6, the initial
accuracy seems high (e.g., over 88 %) until about 100 ms but the
accuracy of stopping hand-face touching gestures decreased over
time, reaching up 20% within about 375 ms after the hand was
detected. It is evident that earlier interventions result in a higher
success rate in stopping hand-to-face touching. However, there is a
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trade-off between accuracy and time. Despite the results being from
a controlled experiment, this is a promising first step toward under-
standing the appropriate time to intervene in hand-face touching
behaviors. This will be further discussed in section 6.1 and 6.8.

5.6 Experiment 3. Deploying D-Touch in the
wild

In this section, we explored how participants performed FrA ges-
tures in the wild and whether D-Touch is able to recognize and
predict the gestures. We collected face-related Activity (FrA) data
at the participant’s home for 1 hour without the presence of the
researcher. Here, we did not give participants alarms to intervene
in their hand-face touching behavior. Our goal for this experiment
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Figure 7: Confusion Matrix of 17 FrA Gesture Detection within 500 ms after the hand shows up in the frame

is to collect hand-face touching behaviors in the wild for further
analysis of D-Touch.

5.6.1 Procedure. The researcher helped set up D-Touch with the
participants and left them at their homes. The participants were
asked to freely do any activities at their homes without any con-
straints. The purpose of this setup is to collect their natural and
unconscious hand-touching activities at their homes where they
are most comfortable. Even though the device was connected to a
laptop with a 3-meter-long wire, participants are able to move freely
in their homes within a radius of 3 meters. To emphasize once again,
all participants reported no discomfort in moving their hands and
moving around their homes. After the experiment, the researcher
returned to the participants’ homes to collect the experiment device.

5.6.2 Data Collection. The experiment took 60 minutes for data
collection. We collected about 162,000 image frames (40 fps x 60s x
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60 m) per participant, and 1.62 M frames in total from ten partici-
pants.

5.6.3 Labeling for Ground Truth, Removal of Noise, and Training
Models. We manually labeled all frames for all participants by
watching the collected images from Leap Motion since it was hard
to get ground truth using an additional front-facing camera. For
some images, it was not clear what kind of activity the participants
performed, so three researchers labeled the data and then chose
the most out of the three. In the case where the three researchers
disagreed on the images, we asked the participants to confirm their
activities. For a hand touch gesture, we labeled all frames in that
segment (from the first frame shown in the camera to the last frame
when the hand touched the face). We removed some noises such
as lighting while participants are moving if the noises appear less
than 150 milliseconds (i.e., the five input images). Here, we trained
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Table 3: Basic statistics on Face-related Activity (FrA) on the in-the-wild data set (millisecond) and Accuracy (percentage- %)

Label #1 Sample | Mean SD Min Max  Median Label #2 Accuracy
Total 503 399.0 1344 164.7 1223.5 364.7 - 78.2
Left Eye 12 321.6 69.2 2353 411.8 323.5 Facial T-zone 75.0
Mouth 92 4104  196.8 176.5 1011.8 364.7 Facial T-zone 76.1
Nose 59 3384 1153 188.2 600.0 305.9 Facial T-zone 66.1
Right Eye 5 331.8 88.2 235.3 400.0 388.2 Facial T-zone 80.0
Calling 364.7 0.0 364.7 364.7 364.7 Other Activities 100
Drinking 42 5134 1552 3294  1070.6 464.7 | Other Activities 81.0
Eating 53 555.2 2709 211.8 12235 470.6 Other Activities 83.0
Eyeglasses 7 358.0 111.6 247.1 576.5 341.2 Other Activities 0.0
Left Forehead 15 360.0 105.7 247.1  576.5 329.4 | Other Activities 80.0
Right Forehead 12 413.7 2263 211.8  870.6 352.9 | Other Activities 58.3
Hair 87 373.1 152.0 2235 1000.0 3294 Other Activities 93.1
Left Cheek 53 556.9 2388 188.2 1094.1 564.7 Other Activities 81.1
Left Ear 15 405.5 116.6  270.6 600.0 376.5 Other Activities 73.3
Right Cheek 21 3317 761 211.8  517.6 317.6 | Other Activities 76.2
Right Ear 29 350.9 93.3 164.7 470.6 400.0 Other Activities 75.9

the user-dependent CNN+LSTM models based on two different
input lengths, i.g., 6 and 20 image frames, using all data from each
participant in Experiment 1 to recognize the gestures in the wild.

5.6.4  Result. We collected 503 FrA gestures in total from ten par-
ticipants in the in-the-wild experiment. Out of 17 FrA activities we
designed in Experiment 1, 15 FrA gestures were recorded includ-
ing the new activity i.e., adjusting glasses. Three activities such as
touching their chin left neck, and right neck did not occur.

On average, the participant performed FrA gestures 49 times per
hour (SD: 16.78) (ranging from 24 times to 78 times), indicating that
the result seems similar to those of previous hand-facing tracking in
the wild [1, 2, 5, 8, 11]. Among these FrA gestures, 46% account for
touching the facial areas, and 54% were related to other activities.
Each participant touches their face 22.5 times an hour (SD = 9.3)
on average.

When touching the face, 70% of the time the participants touched
the T-zone, and the remaining 30% of the time they touched the
cheeks or forehead. Considering the hand type, 53% is left-hand 44%
is right-hand. 3% of the time they use both hands (3%). Although
the participants were all right-handed, we found that they often
used their left hand to touch the face, while the dominant hand was
frequently occupied such as holding a cup or using a smartphone.
There was no significant difference for times to touch, t(563) =
0.3287, p = 0.7425, despite in the in-the-wild condition (M = 422
ms, SD = 194.1 ms) having a higher standard deviation than the
controlled setting (M = 425.5 ms, SD = 121.3 ms).

D-Touch was able to distinguish the 15 FrA gestures in the in-
the-wild condition with an average of 78.2% (SD = 2.5%) accuracy
within about 500 ms (input length = 20 image frames) after the
hand first appeared in the camera. The accuracy was lower than
that from a controlled setting in Experiment 1 since our models did
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not train the data such as the new activity, i.e., adjusting glasses,
different hand poses, and the use of both hands.

Based on the result of the intervention study, the participants
were able to stop their face-touching activity with an average suc-
cess rate of 72.1%(SD = 4.1 %) within 150 ms notice in advance (input
length = 6 image frames). If D-Touch predicts three FrA activities
categories in the in-the-wild condition: facial T-zone, other activi-
ties, and noises, the accuracy was over 72.3% (SD = 5.9%) within 150
ms after the hand showed up in the camera. Although this figure
did not come from a real-time intervention study in the wild, it in-
dicates that D-Touch has the great potential to provide just-in-time
intervention to stop the undesirable hand-face touching gestures
in the in-the-wild condition.

6 DISCUSSION

In this section, we discuss the limitations of the current system and
the challenges and opportunities of applying D-Touch at scale for
real-world applications.

6.1 Trade-off Between Accuracy and Prediction
Time

In terms of evaluation, we found that there is a trade-off between
high prediction accuracy and time. In general, the accuracy is higher
when the hand is closer to the face. However, it should be noted
that in the case of an intervention, an alarm was less useful if the
hands are too close to the face. Considering accuracy and prediction
time, the intervention should be set up for its purpose. Furthermore,
better hardware equipment will make predictions faster. For exam-
ple, the new type of LeapMotion, high-performance Stereo IR 170
(formerly known as Rigel), has a wider field of view (170X 170) and
a longer tracking range (up to 100cm), allowing it to potentially
make even faster predictions.



U1 °23, March 27-31, 2023, Sydney, NSW, Australia

6.2 Potential Applications of a Neck-mounted
Wearable

D-Touch is designed to recognize and predict hand-face touching
behavior using a neck-mounted wearable device with cameras.
We believe the system can have several other applications related
to the face such as human activity recognition (HAR), on-body
input techniques, facial expression reconstruction, and silent speech
recognition. D-Touch showed the possible potential to recognize
other 6 facial-related activities (FrA) since it can capture the images
when performing the activities. D-Touch could be improved on
HAR by training the model with a massive data set having labels
on different activities. Also, the D-Touch system can distinguish
fine-grained 11 facial areas so that it be employed as a new input
technique such as FaceRubbing[40] and EarBuuddy[69], increasing
input space from devices to the body [43]. In addition, capturing the
partial facial images from the neck can provide enough information
to continuously reconstruct facial expressions [9]. Lastly, the neck-
mounted wearable camera can be used as silence speech recognition
[73] with images of the neck and face from under the chin.

6.3 In-the-wild Scenarios

Although D-Touch demonstrates promising results in both recogni-
tion and prediction of HFT-related activities in in-the-wild condi-
tions, we would like to acknowledge that the study was conducted
in a relatively limited in-the-wild setting. We expect that, like all
existing technologies, the system will encounter challenges in a
less controlled in-the-wild setting.

Firstly, the images captured in the in-the-wild scenarios are likely
to be noisier with more diverse lighting conditions and backgrounds.
In order to see how much this would impact the image quality, we
compared the images captured in indoor and outdoor environments
with both sensing devices (IR camera and LeapMotion). LeapMotion
is likely to be less impacted by strong sunlight. We discuss this in
detail in the section 6.4. For more complicated lighting and back-
ground conditions, the issue can potentially be eased with image
augmentation and a separate model for background removal.

Secondly, the device stability has not been thoroughly tested in
a more complicated application scenario. In the in-the-wild condi-
tions, people are more likely to engage in more vigorous activities
such as running. This could cause the device to shift significantly.
Also, during these types of activities people are more likely to lean
forward, thus tilting the camera angle down, potentially captur-
ing more objects in the background. For the first case, apart from
directly addressing the device stability issues, it is also possible
to integrate an automatic device status detection that reminds the
user to adjust the device position and orientation when needed.
For the second case, similar techniques used for the complicated
background issue can also be applied.

Thirdly, actual activities, both HFT activities, and other HFT-
similar activities can have much greater diversity. For example,
people may use both their hands to touch their faces, or people may
use their hand to swipe across their faces repeatedly, creating much
more complicated cases for the system to recognize. This issue can
potentially be addressed by increasing the number of training sets,
as well as focusing on the most important information needed for
intervention.
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However, our results for recognizing or predicting HFT-related
activities in the in-the-wild scenarios are promising. The objec-
tive of D-Touch is to demonstrate the feasibility of recognizing
and predicting fine-grained HFT-related activities using a necklace-
mounted camera. We leave further optimization in the wild envi-
ronment for future exploration.

6.4 Various Lighting Conditions Indoors and
Outdoors

The user studies were conducted indoors, during the morning,
afternoon, and evening, with varying lighting conditions. Although
D-Touch performs well indoors, using it outdoors may result in
reduced performance due to bright sunlight. The bright background
caused by the infrared spectrum in sunlight makes it challenging
to segment skin from the background. In order to investigate the
influence of sunlight, we compared photos taken with LeapMotion
both indoors and outdoors under sunlight shown in Figure 8. We
found that LeapMotion is less affected by the sunlight, indicating
that LeapMotion has the potential to be used with D-Touch in
outdoor environments. However, the IR camera in LeapMotion
can be affected by direct sunlight. To overcome this challenge, one
solution is to adjust the camera position and angle. By finding the
optimal position and angle for the cameras, it may be possible to
minimize the impact of direct sunlight and improve performance.
For example, pointing the cameras towards the chin and neck region
can help reduce the effects of bright sunlight on the captured images,
but may compromise prediction performance.

LP Incdaor
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Figure 8: Images captured by Leap Motion camera in indoor
and outdoor environment.

6.5 Privacy Concerns

The privacy aspect of wearable camera-based systems is a signifi-
cant concern while deployed in everyday settings, as they have the
potential to capture personal information in different situations.
To alleviate this issue, D-Touch has been designed with privacy in
mind. The IR camera in D-Touch is positioned at the bottom of the
neck and points upward, which restricts the captured information
to parts of the ceiling or sky, and the environment in the back-
ground is mostly dark, except in the presence of a near-infrared
light source. This design, combined with the use of special lighting
and filters, could minimize the capture of sensitive information.
The captured chin and face from the neck have less privacy in-
formation compared to the images captured by frontal cameras.
However, we admitted that camera-based systems do capture more
environmental information than non-camera wearable systems.
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The future work for the D-Touch includes finding ways to remove
privacy-related information from the IR images and determining
the best method for storing the data, such as feature extraction in
real-time.

6.6 Power Consumption

Powering wearable technology has been a persistent challenge
in the field. The prototype of D-Touch developed in this paper
serves as proof of concept, but is not yet ready for immediately
widespread use. The current prototype, which uses LeapMotion,
has a relatively high power consumption, meaning its battery is
unable to last all day. To overcome this challenge, one possible
solution includes optimizing D-Touch with advanced algorithms
for image processing and low-power components such as micro-
controllers like ESP32 (which consume only 0.79W even with the
wireless module activated), low-power cameras (e.g., OV9755 which
consumes 100mW at 1280x720@60fps), and reducing the duty cycle
of the two LEDs.

6.7 User-independent Model

The evaluation of the classification and prediction in Experiments
1 and 3 was performed using user-dependent models, where the
training and testing data came from the same participant. How-
ever, this approach has its limitations as it requires new users to
spend time collecting data to train the model. To address this, we
conducted a leave-one-participant-out evaluation using data from
9 participants to train the models and evaluating them using data
from the remaining participant. Each participant had two models
for classification (20 input images) and prediction (6 input images),
and this process was repeated 10 times so that each participant’s
data was used once for testing. The results showed that D-Touch
could recognize 17 FrA gestures and predict T-Zone vs Other ges-
tures with an average accuracy of 59.2% (SD = 12.3%) and 71.2% (SD
= 6.1%) respectively in a controlled lab setting, and 43.4% (SD = 7.3%)
for 15 FrA classifications and 56.2% (SD = 5.6%) for prediction in the
wild setting. The performance was significantly lower compared to
user-dependent models, as the participants’ features, including face
and hand shapes, hand movement, and neck length, were likely
different and led to misclassification of gestures. This suggests that
more data is required to develop a general model for new users. We
will further explore user-independent models in the future when
more data is available.

6.8 Limitations and Future Work

Although our user study results have shown a promising first step
towards recognizing and predicting when and where hand-to-face
touches occur and how early give the alarm for stopping the be-
havior, our system still has some limitations that can be improved
upon, as is the case with every research prototype.

People may not be willing to wear the device in their daily lives.
The main component of the D-touch prototype is a tie-clip device
with an IR camera module and an LED mounted on it. An FPC cable
is needed to connect the camera module to the laptop. We need to
design our device in an aesthetically pleasing way so that people
are more likely to wear it. Furthermore, the tie-clip may not work
well for all types of clothing. For instance, some shirts may not
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have a collar to attach the sensor to. Other clothes may partially or
fully block the view of the cameras. We plan to also explore other
possible form factors around the chest and neck areas in the future
to offer more options for users.

The current implementation of D-Touch cannot be immediately
applied to commodity wearable devices, as some parts of the hard-
ware are large and not energy efficient. Moving forward, we aim
to optimize the hardware design so that the system can fit into
one wearable device, eliminating the need to run a wire to another
computer. One possible solution is to use the necklace only as the
data collection device, which then transmits the data to a cloud
server. The server will carry out all the heavy computing work
(e.g., machine learning, image processing) and return the prediction
results. Additionally, we can also reduce the frame rate of the LED
light and camera to prolong battery life.

In Experiment 2, we obtained noteworthy results regarding the
timing of D-Touch system alarms to interrupt hand-face touching
behaviors. However, it is important to consider that the experi-
ment was conducted in a controlled environment which may have
influenced the natural behavior of the participants. For instance,
even though we instructed participants to perform hand-face touch-
ing gestures in a natural manner, with random alarm timing, the
participants might have hesitated or acted abnormally due to the
expectation of an alarm. As future work, we plan to conduct a field
study with a wireless D-Touch system to gain a more comprehen-
sive understanding of how our system can effectively interrupt
hand-face touching in real-life situations.

7 CONCLUSION

In this paper, we present D-Touch, the wearable-based device that
can recognize and predict whether and where the hand touches the
face. It uses an IR camera to capture the hand activities around the
face. These IR images are learned by a customized deep-learning
model to recognize and predict hand-face touching behaviors. The
user study with 10 participants showed that D-Touch can recognize
17 Facial-related Activity (FrA), i.e., 11 touch positions on the face
from other 6 activities with over 92.1% accuracy. Also, D-touch can
predict hand-face touching with an average accuracy of 82.12%,
150 ms after the hand shows up in the camera frame. Based on the
results, we further discussed the limitations of the current system,
as well as the opportunities to deploy the system in real-world
applications.
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