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ABSTRACT
Self-recording eating behaviors is a step towards a healthy lifestyle
recommended by many health professionals. However, the cur-
rent practice of manually recording eating activities using paper
records or smartphone apps is often unsustainable and inaccurate.
Smart glasses have emerged as a promising wearable form factor for
tracking eating behaviors, but existing systems primarily identify
when eating occurs without capturing details of the eating activities
(E.g., what is being eaten). In this paper, we present EchoGuide,
an application and system pipeline that leverages low-power ac-
tive acoustic sensing to guide head-mounted cameras to capture
egocentric videos, enabling efficient and detailed analysis of eating
activities. By combining active acoustic sensing for eating detection
with video captioning models and large-scale language models for
retrieval augmentation, EchoGuide intelligently clips and analyzes
videos to create concise, relevant activity records on eating. We
evaluated EchoGuide with 9 participants in naturalistic settings
involving eating activities, demonstrating high-quality summariza-
tion and significant reductions in video data needed, paving the
way for practical, scalable eating activity tracking.

CCS CONCEPTS
• Computing methodologies →Machine learning; • Human-
centered computing → Ubiquitous and mobile computing
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1 INTRODUCTION
Self-recording eating behaviors is a step towards a healthy lifestyle
recommended by many health professionals. However, the current
practice requires users to manually record their eating activities, in-
cluding when and what they eat, using paper records or smartphone
apps. This manual method is often unsustainable and sometimes
inaccurate, as users frequently forget to record their activities.

Smart glasses have emerged as a promising wearable form factor
for tracking eating behaviors. To alleviate the need for manual
recording, various sensing systems based on smart glasses have
been developed to distinguish eating behavior from armmovements
[41], ambient sound[31] or facial muscle movements[28]. However,
most of these systems can only identify when eating occurs but not
what is being eaten, which is critical information for interpreting
eating behaviors. Conversely, sensing systems such as cameras,
which can capture detailed information on eating (e.g., the type of
food consumed), have high power consumption, making continuous
operation impractical on commodity smart glasses.

In this paper, we explore the research question:
• Is it possible to use low-power active acoustic sensing on glasses
to automatically guide the camera to capture activities, such
as eating, in an energy-efficient manner without losing much
critical information?

Active acoustic sensing[33] has been shown as a low-power
and powerful sensing modality for tracking and interpret vari-
ous types of fine-grained body poses on wearables, including fa-
cial expressions[18], gaze[17], finger pose[14, 37], body pose[21],
tongue gesture[29], silent speech recognition[39, 40], authentication[8,
16] and physiological signal [7, 9]. The latest work ActSonic[22] has
shown that using active-acoustic sensing on glasses can recognize
over 28 types of everyday activities (including eating) in the wild
with 89% F1 score at each second without the need for any train-
ing data from a new user. More specifically, it recognizes eating
activities with an F1 score of 90% in completely unconstrained envi-
ronments. However, this sensing modality doesn’t capture the full
context of a given activity. For activity recording and downstream
applications (such as calorie counting or recipe assistance), it’s
important to understand not only what action (e.g., when eating
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happens) is performed given body motion, but also what objects
(e.g., what is the food being eaten) the action is being performed
with.

In this paper, we present the design and implementation of
EchoGuide, an application and system pipeline that combines the
strengths of active acoustic sensing for action detection, video cap-
tioning models for detailed egocentric action understanding, and
large-scale language models with retrieval augmentation for con-
versational QA with action records, to enable efficient and seamless
action recording and retrieval within specialized everyday domains
such as eating.

By leveraging efficient pre-trained models for action detection
via active acoustic sensing from ActSonic[22], EchoGuide can in-
telligently “clip" the videos to guide the camera and video models,
creating an activity record that remains far shorter than naive dense-
clip video captioning applications while additionally remaining far
more relevant than inflexible sparse clipping methods.

We evaluate the performance of EchoGuide with 9 participants
wearing GoPros and ultrasonic sensors affixed to commodity eye-
glasses to collect data about eating in the unconstrained environ-
ment of the participant’s choice. With customized acoustic data
preprocessing, action detection, video captioning, and action re-
trieval QA pipeline, we efficiently build activity records with signif-
icant reductions in record length while maintaining high semantic
correlation with densely captured records. We evaluate the sys-
tem via a semi-in-the-wild user study with 9 participants focused
on eating actions. Additionally, we discuss some of the challenges
that EchoGuide must address to be deployed further at scale. We
summarize the contributions as follows:

• To the best of our knowledge, we are the first to demonstrate
the feasibility of leveraging active acoustic sensing on glass
frames to guide the highly efficient capture and analysis of
egocentric video for eating activity tracking.

• We propose an end-to-end application pipeline enabling
seamless and efficient action detection, video captioning,
and action retrieval/QA leveraging a combination of active
acoustic sensing and egocentric video.

• We evaluated the end-to-end pipeline on eating activities
collected in naturalistic settings of 9 participants’ choices
through a user-independent and session-independent study.
Our system provided high-quality summarization (68% aver-
age reduction in activity records along with high alignment
between reduced and original activity records given eating-
focused videos) while significantly reducing the amount of
video data needed.

2 RELATEDWORK
Multimodal Image/Video Captioning and Summarization:
As larger-scale language and multimodal generative “foundation
models" [5] have been trained and released, image and video cap-
tioning has extended from simply determining the similarity of
images/videos to a premade list of captions [19, 25, 27, 32, 35, 36]
towards generating captions for new videos based on either fine-
tuning inexpensive smaller-scale Large Language Models with
video encoders and captions [43] or leveraging the emergent prop-
erties of natively multimodal Large Language models (such as the

OpenAI GPT-4 multimodal series [1, 26] and Google Gemini multi-
modal series [30]), truly “open-world" video captioning becomes
more possible especially in a “zero-shot" paradigm without labeled
examples. These systems can be applied offline throughout a video
to create “activity records": long documents which encode which
activities a person might be completing within the course of a video,
and which can be efficiently indexed and searched.

Extracting insights from preprocessed "activity records" requires
methods which can generate relevant answers to queries that are
grounded in specific documents. Recent generative methods, espe-
cially in scenarios involving domain-specific information, leverage
the Retrieval-Augmented Generation [15] for returning helpful
responses given queries and documents containing relevant infor-
mation.

However, the primary bottleneck when leveraging image/video
captioning and summarization systems especially over longer videos
is power and compute consumption: wearable cameras such as the
GoPro HERO9 [11] do not have sufficient battery life for continu-
ous daily capture, and video-processing models which recognize
activities and objects have high compute requirements.

Eating Recognition onGlasses: Various sensing modalities on
eyeglasses form factors have been proposed to track eating events.
These modalities include EMG electrodes [38], piezoelectric sens-
ing [10, 28], contact microphones [4], microphones and IMUs [24],
and sensor fusion [2, 3]. While these systems track eating episodes,
they lack the ability to provide detailed information related to eat-
ing activities, such as what food a person eats. This limitation is
due to the absence of optimized access to an egocentric camera for
extended monitoring periods.

3 THE SYSTEM DESIGN OF ECHOGUIDE

Figure 1: Glasses and GoPro Hardware setup for EchoGuide

In this section, we will present the design of EchoGuide including
1) the hardware prototype we used to collect egocentric acoustic
and video data for eating activities; and 2) the software and deep
learning pipeline we used to process the acoustic data for eating
event segmentation and extract details of eating episodes from the
segmented video clips.

3.1 Hardware Prototype
3.1.1 Glasses with active acoustic Sensing. We used a similar hard-
ware prototype design of the glasses as ActSonic[22] as shown in
Figure 1. They include two OWR-05049T-38D1 speakers for chirps

1https://www.bitfoic.com/detail/owr05049t38d-14578
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and two ICS-434342 microphones for receiving signals. The sys-
tem uses a Teensy 4.13 microcontroller to store the transmitted
signal and save the received signal on its SD card. Using a similar
hardware prototype design will allow us to directly use ActSonic’s
fully pre-trained deep learning model to identify eating moments
in everyday activities without the need of any new training data.

3.1.2 Head-mounted GoPro for egocentric video capture. : To collect
egocentric video of user’s activities, we used a head-mounted GoPro
HERO-94, as shown in Figure 1. The data was saved on the SD card
within the GoPro.

3.2 Data Processing Pipeline

Figure 2: EchoGuide vs Generic LLM Document Generation

The EchoGuide Software and Deep Learning application follows
a two-stage pipeline consisting of first processing synchronized
egocentric videos and processed active acoustic data into “activity
records" representing a history of user activities, and then building
a question-answering framework leveraging large language models
and Retrieval Augmented Generation for indexing, retrieving, and
answering questions grounded in these “activity records". This
modular pipeline enables incremental improvement of individual
components as they become more capable and is contrasted with a
naive dense captioning pipeline whichmust process the entire video
(as shown in Fig 2), with natural language acting as an intermediate
step between dense perceptual information and question-answering
systems.

3.2.1 Using Active Acoustic Sensing to localize relevant actions and
clip videos. Weacquired the Resnet-18model reported inActSonic[22]
via contacting the authors. Our goal is to directly use the pretrained
model in ActSonic to determine when an eating activity happens,
leveraging the strong user-independent performance of ActSonic
for detecting eating activities in in-the-wild settings [22].

We leverage ActSonic’s ResNet-18 model as an event detector by
splitting the active acoustic differential echo profile (synchronized
with the video) into consecutive 2-second windows which can be
passed directly into the model. We define a set of “domain-specific

2https://invensense.tdk.com/products/ics-43434/
3https://www.pjrc.com/store/teensy41.html
4https://gopro.com/en/us/news/hero9-black-announce

classes" within the label space of ActSonic which capture impor-
tant events for this particular domain, extract class predictions
for all sliding windows (essentially treating the class prediction’s
“timestamp" as the last timestamp of the corresponding window),
and construct intervals of events by filtering for “domain-specific
classes" and joining equivalent predictions in consecutive windows
to create clips without requiring dense captions.

3.2.2 Generating activity records from video and active acoustic
sensing. To generate activity records, we take a preprocessed and
synchronized dataset containing egocentric videos and acoustic
echo/differential profiles from user activities, and apply two mod-
ules: a clipper to each long untrimmed video/acoustic pair to con-
vert the pair into a series of video clips with possible metadata,
and a captioner which can take video clips and associated meta-
data (e.g. timestamp, acoustic classifier label, etc) and generate a
“caption" for the clip in EGO-4D format (treating "C" as the camera-
wearer) [12], incorporating time metadata as well. We can then join
the captions with timestamps to create an “activity record" for the
given session. Within EchoGuide(), we primarily focus on proving
out the combination of ActSonic as a “clipper" [22] and LaViLa’s
Narrator (a video-to-GPT2 model fine-tuned on EGO-4D [12], an
egocentric vision dataset) as a “captioner" [43].

3.2.3 Answering questions given activity records. We leverage a
Retrieval-AugmentedGeneration [15] framework such as LlamaIndex[20])
for efficiently chunking and embedding a given series of documents
(leveraging OpenAI’s “text-embedding-ada-002" embedding model)
as well as input queries. Given an input query, we run a similar-
ity search on the query embedding vs chunk embeddings (using
cosine similarity) and pass the top “k" chunks into the context of
a language model (in our case GPT3.5 [6]) to efficiently answer
questions about the activity record via a chat/question-and-answer
interface.

4 USER STUDY
To collect data for evaluating EchoGuide, we conduct a semi-in-
the-wild user study in various naturalistic locations (including
participant homes and offices), focusing on capturing natural data
of users eating while also performing other activities (such that
only parts of each sequence relate to relevant actions). We leverage
the activity set proposed in ActSonic [22], which describes a wide
collection of everyday activities.

Participants The EchoGuide user study received approval from
the Institutional Review Board for Human Participant Research
(IRB) at our organization. We recruited 10 participants for a semi-
in-the-wild user study at their homes. However, 1 participant’s data
was lost during the user study. Therefore, we ended up with 9 valid
participants in the study, ranging in age from 19 to 34. 6 participants
self-reported as male while 3 self-reported as female. We collected
basic demographic data and their ratings on the prototype through
an IRB-approved questionnaire. The average comfort rating on a
Likert scale of 0 to 5 was 2.62.

Data Capture Apparatus We captured acoustic data using the
sensing system integrated into EchoGuide eyeglasses and recorded
egocentric activity video data via the EchoGuide GoPro Hero9 [11]
camera mounted on the participants’ heads using a lightweight
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body mount from the same manufacturer. The camera’s horizontal
and vertical field of view was set to 118° and 69° respectively. It
recorded egocentric videos at a resolution of 720p and a frame rate
of 30 fps.

Study Procedure We conducted a 9-participant semi-in-the-
wild user study in unconstrained environments such as participants’
homes and offices. The recruited participants were equipped with
eyeglasses and a head-mounted camera.We synchronized the acous-
tic and video data with a clap action performed by the researcher as
the two sensors were physically separated. After synchronization,
the participants could continue normal activities without interrup-
tion if they ate or drank at least one item within the 40-minute
window. Upon completing the 40-minute study, the participants
returned the devices to the researcher. We had 5 participants collect
data at their homes and 4 in their office environments.

5 EVALUATING QUALITY OF EATING
ACTIVITY SUMMARIES AND RESPONSES
WITH LLMS

5.1 Metrics
To measure the value of leveraging a supervised ultrasonic model
to actively guide video captioners toward more efficient action cap-
tioning for retrieval, we define two primary metrics for evaluating
system quality:

5.1.1 Answer alignment with dense captioning. Given a single ques-
tion related to the domain, we find semantic similarity between
the answer from a RAG QA agent that has indexed an activity
record with alternative sampling (e.g. leveraging the ultrasonic
modality to filter and caption fewer frames) and the answer from
a RAG QA agent that has indexed an activity record with dense
video sampling (e.g. captioning the entire video, which can reduce
overall efficiency but captures all possible information). Semantic
similarity is captured via BERT F-1 scores [42], which captures pair-
wise cosine similarities (within the range -1 to 1) between BERT
output embeddings to capture semantic and contextual informa-
tion and which shows high correlation with human evaluations on
summarization and captioning tasks (closely related to this work).
Similarity scores are used to quantify information loss between the
densely captioned model and the ActSonic-captioned model.

5.1.2 Recording reduction compared to dense sampling. Different
video clipping methods can lead to different “line counts" for an
activity record (as each line of an activity record correlates to a
clip in the video where a video captioner model was used). We
can therefore find the size reduction between EchoGuide/ActSonic
records (where clips are extracted using the ultrasonic modality)
vs densely-captioned records (where clips are densely extracted at
1-second intervals).

5.2 Evaluation Procedure/Baseline Description
We show per-participant metrics across the two studies across
domains.

We focus on the following baselines and report per-participant
metrics along with average metrics for both studies across all rele-
vant domains.

• "1-second Dense Captioning with LaViLa" - this baseline
densely splits the video into 1-second long clips and uses
LaViLa [43] on each clip to caption individual moments in
the video.

• "Ultrasonic Action CaptioningWithout Video" - this baseline
uses models trained on the active acoustic sensing modality
to generate clips based on whether the ultrasonic classifier
(in this case a pre-trained ActSonic [22] model) classifies a
particular 1-second clip as within the domain. The caption
for this domain is derived from the classifier label (e.g. for a
particular label “eating", the caption would be extracted as
“C performed the action: eating"). Notably, this method does
not need to sample the video at all, but misses vital context
which could be useful for understanding the details of the
action.

• EchoGuide, using ultrasonic action detection (via a pre-trained
ActSonic [22] model) to efficiently clip a video before apply-
ing the LaViLa narrator to build an activity record.

5.3 Quantitative Results
We report per-participant metrics in Table 1. We find a relatively
large reduction (avg 68%, max 95.9%, min 34.7%) in activity records
using active acoustic sensing with relevant domain actions, though
reductions are uneven due to the uneven distribution of eating ac-
tivities (e.g. P06 spent most of the session eating, resulting in a low
reduction of the activity record). We found a higher alignment score
by combining both ultrasonic and video modalities to capture and
record activities when compared to only using the cheaper ultra-
sonic modality (0.892 avg for EchoGuide vs 0.828 avg for ActSonic,
with low alignment values primarily due to a lack of relevant details
within the corresponding activity documents, preventing the LLM
from giving a detailed response). Notably, these high correlations
and significant % reductions are achieved without fine-tuning either
the ultrasonic activity clipper or the visual captioning model on
new videos, resulting in “session-independent/user-independent"
performance metrics. In addition, these results are collected on user
study data that is primarily centered around eating activities: if
extended to longer “everyday recordings" where eating is compara-
tively sparse, future iterations of this system could achieve much
higher record reduction metrics.

6 EVALUATING ACTIVITY RECORDS’ ABILITY
TO ANSWER TARGETED EATING
QUESTIONS WITH LARGE
IMAGE-LANGUAGE MODELS

6.1 Metrics/Evaluation Procedure
EchoGuide, however, focuses not only on providing general sum-
maries via activity records of an individual’s day from video and
wearable sensor data, but also on answering targeted questions
about these summaries by leveraging the image-text pertaining of
large multimodal language models. We evaluate this method via
manual review and annotation of the system’s answers to three
eating questions (“What did C eat/drink? What utensils did C use
while eating/drinking? What container did C eat or drink out of?")
when configured to use GPT4o [1] to caption images sampled at
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EchoGuide vs Dense ActSonic vs Dense % Reduction
P01 0.888 0.854 95.1%
P02 0.897 0.823 53.4%
P03 0.873 0.866 83.7%
P04 0.888 0.862 95.5%
P05 0.906 0.774 55.1%
P06 0.890 0.805 34.7%
P07 0.882 0.785 40%
P08 0.897 0.853 95.9%
P09 0.907 0.833 67.5%

Table 1: EchoGuide metrics across participants in user study,
including correlation with dense 1-second clipping (mea-
sured as mean BERT F1 score across all sessions per partici-
pant) vs ActSonic correlation with 1=second clipping, and %
reduction in activity record using active acoustics vs 1-second
clipping

.

Food type (1fps/0.5fps) Utensil type Container type
P01 0/0 0/0 1/0
P02 1/1 1/1 1/1
P03 0/0 1/0 1/0
P04 0/0 0/0 0/0
P05 0/0 1/0 0/0
P06 1/1 1/1 1/1
P07 1/0 1/1 1/1
P08 1/1 1/1 1/1
P09 0/0 1/1 1/1

Table 2: Results of manual evaluation of EchoGuide + GPT4o
given 1fps vs 0.5 fps sampling of frames from ActSonic-
defined clips (based on zero-shot accuracy). Notation is de-
fined as (X/Y) where X=accuracy at 1fps and Y=accuracy at
0.5fps

two varying FPS levels (1fps and 0.5fps) from clips proposed by
ActSonic, and report accuracy metrics showing whether EchoGuide
extracts correct values for these questions as compared to manually-
determined "ground truth" (taken by watching the reference video
and determining which item is present): we’ve shown accuracy
values given 1fps and 0.5fps sampling in Table 2. Accuracy values
are defined as a 0/1 binary: 0 represents responses that do not over-
lap with the ground truth, while 1 represents responses that do
completely overlap with the ground truth.

6.2 Quantitative Results and Discussion
In general, we find that while 0.5fps results in a slow reduction
in performance for some participants, we can attempt to leverage
only a few frames along with metadata information (e.g. classifier
outputs) from active acoustic sensors to output useful informa-
tion, instead of having to process an entire video which could be
full of redundant frames. For more ambiguous class types such as
“food type" (which may not be easily determinable from appearance
alone), we find a relatively low average F1 score (44% for 1fps and

30.5% for 0.5fps) across all participants, whereas for more recogniz-
able/distinctive class type such as utensil type and container type,
we find a relatively high average F-1 score (77% for utensils and
containers for 1fps, 55% for utensils and containers for 0.5 fps). We
find a clear performance drop as FPS is reduced (from 0.55 with 1
fps to 0.47 with 0.5 FPS), due to increased sparsity of frames caus-
ing reductions in visual detail for the models. As vision-language
models and prompting techniques continue to improve, we expect
these numbers will become more accurate over time.

7 DISCUSSION
Further Reduction on video recording when deployed in the
wild Our study results showed that EchoGuide helped reduce video
recordings by an average of 68% without significantly impacting
the quality of summarization for eating activities. However, we
want to point out that this percentage of reduction will likely be
significantly higher if the system is deployed for full-day recording.
In the user study, we only asked participants to collect data for
40 minutes, including the meal. Consequently, the ratio of eating
activities in our dataset is significantly higher than it would be in a
full day of recording. Therefore, if ActSonic is used to only activate
the camera during eating activities in a full-day recording, the data
reduction will likely be significantly higher than 68%. Additionally,
the frame rate of recording can be further reduced to answer specific
questions, saving energy and processing resources. We plan to
explore these questions further in future works

Figure 3: Example showing field of view between GoPro vs
Meta Ray-Bans

Comparison to Egocentric Video recorded on glasses The
initial hardware system for EchoGuide was not collected using
“camera-enabled smartglasses" such as the Meta Ray-Bans [23] due
to limitations on recording videos with these off-the-shelf smart
glasses. Instead, we used a head-mounted GoPro to easily capture
egocentric activity videos. We found the information related to eat-
ing captured by smart glasses and our GoPro settings to be highly
similar. To help readers understand the difference in images cap-
tured by these two devices, we used RayBan Smart glasses and a
GoPro HERO9 mounted on the head to capture the same dietary
scenario (a drink on the table), as shown in Figure 3. We found
that the GoPro has a much wider field of view and can capture
more general scene details in the orientation used by EchoGuide
compared to the camera on the Meta RayBan smart glasses. How-
ever, because most foods are present near the center of the field of
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view, the difference in view angle between the two cameras did not
impact the captured information. Therefore, the results reported
in the paper can still be referenced for egocentric video analysis
captured on smart glasses.

Exploring additional domains for EchoGuideWhile EchoGu-
ide was adapted to focus primarily on localizing and understanding
eating activities from video and acoustics, we also run a separate
exploratory study with three participants operating in both the
“eating" and “cooking" domains. Each participant engaged in 5 ses-
sions of 4 minutes each within each domain with interventions
between sessions to stop and restart data collection, for a total of
40 minutes per participant.

The question for the "eating" domain was “"What did the person
C eat or drink?", with "relevant ultrasonic actions" being defined
as the set of "eating", "drinking", and "pickup/putdown" (referring
to manipulated items) and the question for the “cooking" domain
was “What did the person C cook?" with relevant ultrasonic actions
being the set of “chopping", “pouring", “stirring", “pickup/putdown",
or “walking". We configure LlamaIndex with GPT3.5-turbo and a
temperature value of 0, as well as the standard context prompt
“You are a chatbot, able to have normal interactions, as well answer
questions from the person about what they did today (walking,
eating, cooking, etc). Here are the relevant documents for the con-
text: {context_str}. Instruction: Use the previous chat history, or the
context above, to interact and help the user. Format responses as a
paragraph."

We find a high average % reduction of 87% in record size across
both domains by leveraging active acoustic sensing for clipping
videos, along with higher correlation with dense captions (0.9 BERT
F1 score) while using EchoGuide’s multimodal approach over only
using active acoustic sensing (0.86 BERT F1 score). We find that
combining the video and ultrasonic modalities additionally shows
quantitative improvement (with respect to alignment with the dense
caption summary of the original video) when compared to only us-
ing the ultrasonic modality, while still maintaining high reductions
in the activity record. Though more thorough investigation needs
to be done to show this system can work across a wider variety
of everyday activities, improvements in unseen domains show the
relatively task-agonstic nature of the EchoGuide software pipeline.

Improving comfort and reliability of hardware prototype
The current hardware prototype leverages a Teensy-based micro-
controller on the left side of the eyeglasses which is connected
to a phone for power and recording control, along with a Go-Pro
head-mounted camera for video capture. The relative weight and
complexity of the combined devices were cited in user surveys as
the primary reason for the low comfort rating of the prototype (as
it weighed more on the head and ears).

Leveraging a lower-power BLE with a LiPo battery (similar to
Google Glass) as the primary microcontroller module for active
acoustic recording, along with a Flex-PCB that reduces extraneous
wiring, can reduce the unwieldy nature of the acoustic system. De-
veloping custom low-power, high-FPS and high-resolution cameras
(such as event-based cameras) that are purpose-built for eyeglass
frames can also enable seamless video recording without a Go-
Pro requirement, reducing the weight of the systems considerably.
Building eyeglass frames that can swap lenses in a custom way, or
building a system that can be seamlessly applied on any eyeglass,

can reduce the likelihood of participants with custom prescriptions
being unable to see through the provided eyeglasses.

Reducing software latency to enable real-time applications
Currently, EchoGuide processes and asks questions over activity
records in an offline fashion, but many users may want to under-
stand their activities in an online fashion (for instance, asking about
previous meals while evaluating what food to get at a restaurant).
As seen in other concurrent works [40], active acoustic postprocess-
ing could be completed on a smartphone, and with advancements
in embedded AI chips and stronger networking modules for more
robust cloud access, it may be possible to do end-to-end inference
online with both edge-deployed and cloud-deployed models.

Improving overallmodel flexibility to new situationsWhile
Sec 5 and Table 1 show promising results for EchoGuide usage (com-
bining video and ultrasonic modalities) across two distinct domains
and procedural styles in everyday activities, further improvements
can be made to enhance overall system performance. Collecting
and fine-tuning on a larger base dataset of ultrasonic captures of
activities can enable more robust, user-independent detection of
human body motion, while leveraging steadily more powerful large
multimodal models can enable more robust and generalizable video
captions that encode more domain-specific or estoeric information.

The EchoGuide pipeline leverages a Large Language Model
with Retrieval Augmented Generation to enable document-based
question-answering, along with a Large Multimodal Language
Model to enable video captioning. Further optimization of sys-
tem performance could be achieved via careful prompt engineering
methods, such as chain-of-thought with few-shot exemplars [13, 34].
We leave this in-depth exploration of prompt engineering methods
to future work.

8 CONCLUSION
In this paper, we present EchoGuide, an innovative application
pipeline that combines low-power active acoustic sensing on eye-
glasses, egocentric video analysis, and large-scale language mod-
els to efficiently detect and analyze eating activities. Our evalua-
tion with 9 participants in naturalistic settings demonstrates that
EchoGuide achieves high-quality summarization with a signifi-
cant reduction in record size while maintaining high semantic
correlation with densely-captioned records. As smart glasses be-
come more widespread and equipped with various sensors, multi-
stage pipelines like EchoGuide have the potential to be applied to a
broader range of activities and contexts without requiring explicit
fine-tuning for individual users.
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