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ABSTRACT
FingerPing is a novel sensing technique that can recognize
various fine-grained hand poses by analyzing acoustic reso-
nance features. A surface-transducer mounted on a thumb ring
injects acoustic chirps (20Hz to 6,000Hz) to the body. Four
receivers distributed on the wrist and thumb collect the chirps.
Different hand poses of the hand create distinct paths for the
acoustic chirps to travel, creating unique frequency responses
at the four receivers. We demonstrate how FingerPing can dif-
ferentiate up to 22 hand poses, including the thumb touching
each of the 12 phalanges on the hand as well as 10 American
sign language poses. A user study with 16 participants showed
that our system can recognize these two sets of poses with an
accuracy of 93.77% and 95.64%, respectively. We discuss the
opportunities and remaining challenges for the widespread use
of this input technique.
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INTRODUCTION
Despite years of research and development and substantial
progress made, providing appropriate means for input to wear-
able devices remains a considerable challenge. The size and
comfort required for continuous use of a wearable device, as
well as the need to operate in mobile contexts with minimal
difficulty and attention, make the options of keyboards and
touchscreens less desirable. Voice input is one viable alterna-
tive, but it is not always the most socially appropriate solution.
Another alternative utilizes a user’s phone as input device for
their wearable(s). However, such a proxy (or remote control)
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Figure 1. FingerPing

solution in many cases over-complicates the interaction as it
requires the user to first reach for the phone, which is inconve-
nient in many scenarios such as when the hands are occupied
with another task. Furthermore, the user may need to input in
a more discreet fashion for privacy and social appropriateness
in certain scenarios, such as during a meeting or interacting
with smart home devices, such as Google Home or Amazon
Alexa. Finally, heads-up displays for augmented and virtual
reality present opportunities for non-voice, eyes-free input.
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Given this motivation for a convenient and socially appro-
priate wearable input solution, we introduce FingerPing, a
novel wrist- and thumb-mounted sensing solution to enable
one-handed input. FingerPing relies on detecting various hand
configurations (e.g., the thumb touching the tip of a finger)
based on how that configuration impacts the propagation of
sound waves injected at the thumb and propagating around
the hand. The human body is a good medium for sound prop-
agation [20, 12], and its frequency response varies based on
which path a sound wave travels through the body. A change
in hand configuration, which results from forming the hand
into a variety of different poses or gestures, creates sufficiently
distinct propagation paths for sound waves. To utilize this
phenomenon for recognizing different hand poses, FingerPing
injects acoustical chirps (20Hz–6kHz) ten times per second
from the base of the thumb. These chirps travel through the
hand and are received by microphones present on the thumb
and wrist. The received signals are then classified to match a
set of known poses.

To demonstrate the capabilities of FingerPing, we designed
and evaluated two sets of poses in this paper. The first pose
set consists of thumb taps to the 12 phalanges across the four
fingers, which can be used for number input and potentially
text input with a T9 keyboard1. The other pose set consists of
the ten number poses from American Sign Language, further
demonstrating the flexibility in reliably distinguishing a large
number of simple hand poses. Note that our system effectively
detects endpoints of gesture input. However, the actual data
analysis –after segmentation– is based on classifying static
hand configurations (poses). Consequently, we denote our
approach as pose or hand configuration recognition rather
than gesture recognition – even though its purpose is clearly
targeting the latter. Our technology may suffer more false-
positive errors caused by the on-body acoustic noise during
daily activities. However, false-positives from daily activities
can be addressed with a reliable activation pose. The user
could perform the activation pose to activate the system which
would then enable the full set of poses for recognition. Our
technology may also request additional calibration for different
users. A user calibration procedure can be adopted to address
this issue. More details is provided in the paper.

The contributions of this paper are:

• An active acoustical sensing system that recognizes various
hand poses by retrieving and recognizing the acoustical
signatures generated on the hand.

• The design of a one-handed hand poses set, which maps
a standard 12-key number pad to the natural structure of
the hand and can be used for number input and potentially
text input. A second example pose set for input is the set of
American Sign Language poses for the ten digits 1–10.

• An empirical evaluation of the two pose sets, with the results
discussed in terms of viability for practical applications.

In the remainder of the paper, we will first discuss the pre-
vious work and highlight the innovation and contribution of

1https://en.wikipedia.org/wiki/T9_(predictive_text)

FingerPing. We then present the underlying theory, design and
implementation, and empirical evaluation of the system. In
the last section, we discuss the challenges and opportunities
for using this novel technique in everyday applications.

RELATED WORK
Providing appropriate input for wearable devices has been a
research topic in the community for years. Various sensing
modalities and form factors have been explored to improve the
wearable input experience. Here we categorize these past re-
search based on the form factors and placement of the various
solutions.

Input with an armband
Performing hand gestures can introduce or alter various signals
in the arm region, either the forearm or upper arm. To utilize
this phenomenon for recognizing finger or hand gestures, these
armbands detect different signals. [9, 14] recognized tapping
positions on forearm using active and passive acoustic sens-
ing, and [17] uses electromyography signals. Unfortunately,
wearing an armband is rarely a convenient experience from
the user’s perspective.

Input with a wrist-mounted device
Compared to armbands, wristbands like wrist watches are
more commonly worn and are also more convenient. There-
fore, many researchers have developed wrist-mounted devices
to recognize finger gestures by capturing different types of
changes around the wrist area with respect to a number of
different sensing modalities, from inertial movement [12, 23,
12], computer vision [13], forces [5], proximity [8], electrical
signals [4], or acoustic signals[19, 15, 1].

Input with a ring
More recently, accompanied by the advancement of the
wearable computing technology (e.g., battery, processor), re-
searchers have been able to work on smaller wearable input
devices such as a ring. Similar to the wrist-mounted device,
wearing a ring is also socially appropriate in most scenarios. In
addition, because the ring is worn on the fingers, it can gather
more information and is at an even better position to capture
the finger gestures. Thus, rings built with different sensing
modalities have been explored to classify finger gestures, such
as acoustic and motion sensing [21, 22], computer vision [2] ,
magnetic sensing [3, 10], or electrical sensing [24].

All of these previous solutions involve passive sensing, that
is, the sensors placed on the body are detecting phenomenon
produced by either the body itself or some agent external to
the body. FingerPing uses an active acoustic sensing mech-
anism to recognize the hand poses, meaning that the sensor
solution produces a powered signal that is then sensed as it
propagates along the hand and wrist. Active acoustic sensing
has also been applied to find content level in a container [6]
and distinguish laptop and earbud configurations[11]. While
this solution does require a power source for both transmission
and reception (as opposed to just reception for a passive solu-
tion), the improvement in number and resolution of distinct
poses and recognition accuracy justifies this added constraint.
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THE DESIGN OF HAND POSES
In this paper, we demonstrate the capability of FingerPing by
recognizing two sets of hand poses.

Figure 2. Tap on 12 Phalanges

Figure 3. Digits ’1’ to ’10’ from American Sign Language

The first set of poses enables the user to input digits by touch-
ing any of the 12 phalanges of the index, middle, ring, and little
fingers (see Figure 2) with the thumb. Because of the similar-
ity between the layout of the 12 phalanges and a number-pad,
this layout could be used to input digits or potentially input
text using T9 keyboard without the heavy mental efforts to
memorize different gestures.

The second set of poses are the numbers ’1’ to ’10’ from Amer-
ican Sign Language as shown in Figure 3. We use this set of
poses to demonstrate the potential of FingerPing to recognize
various other poses of the hand. In addition, recognizing this
set of hand poses can potentially be used to translate the digits
expression from American Sign Language(ASL) for people
who do not understand ASL. For instance, the recognized
results can be played in audio to assist the communication.
Furthermore, these poses can also be used as shortcuts to
access different functions in wearable computers.

THEORY OF OPERATION
FingerPing exploits the physical phenomenon that the spectral
properties of sound waves change based on the paths they

travel between sender and receiver. Performing different hand
configurations has an impact on how the sound travels through
the hand. For instance (Figure 1), when the thumb is open (not
touching any fingers), there is only one major path the signal
can travel from the speaker on the thumb to the receivers on the
wrist, namely the direct path. Once the thumb touches one of
the phalanges, a secondary path is created for sound propaga-
tion: starting from the speaker, via the touched phalanx and the
corresponding finger, and finally to the receivers. In this case,
the signals received would stem from at least two major paths:
i) the direct path; and ii) the "detour" path, which goes through
the phalanx and the finger. Depending on which phalanx is
touched, the second path– the "detour"–changes, which also
changes the energy of different frequencies. They can be either
amplified or reduced depending on the amount of tissue/ bone
in the path taken by the wave. Different components (e.g., tis-
sue, bone) present different acoustic frequency response. This
property of sound wave propagating through the human body
constructs the unique fingerprints in frequency response for
different hand configurations. The same phenomenon can also
be observed for non-touch poses as shown in Figure 3, where
the second path (detour path) varies depending on which hand
pose is performed. Figure 4 shows the frequency response of
chirps received from three receivers on the wrist area for the
first pose set (digits; explanation below).

IMPLEMENTATION

Hardware Design
FingerPing consists of two parts of hardware: i) A surface
transducer for emitting sound (sender); and ii) Four contact
microphones –receivers– that capture sound signals after they
have traveled through the user’s body. In what follows we will
describe both components in detail.

Surface Transducer
The surface transducer2 is used to emit sound into the hand.
The transducer is driven by a function generator (Agilent
33500B) and attached on the thumb using Kinesiology tape
which is stretchy and elastic. We use a function generator to
send ten chirps of 2 Vpp per second. For each chirp, we first
linearly sweep the frequency range from 20Hz to 6,000Hz for
0.05 seconds, and then hold on at 6,000Hz for another 0.05
seconds as shown in figure 5. The range for the frequency
sweep was optimized in an experimental evaluation (results
not shown here) that unveiled that frequencies up to 6,000Hz
retained maximum information while propagating in the body,
which is also in line with previous findings in the literature
(e.g., [20]).

Sound Receivers
The second part of the hardware includes four contact micro-
phones (Knowles BU-21771) used to capture the signals from
the body, each of which is 7.92 mm by 5.59 mm by 4.14 mm
in size. These contact microphones provide a low noise floor
and very flat frequency response. One of the microphones
is attached on the thumb and the remaining three are aligned
on the wrist as shown in Figure 1. We built a watch-like de-
vice to attach the microphones to the wrist of the wearer. A
2https://www.sparkfun.com/products/10917
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Figure 4. Frequency responses of taps on 12 phalanges

Figure 5. Sweep Signal

piece of silicone is placed between the watch case and the
microphones to fix the positions of the sensors and match the
acoustic impedance as demonstrated in [16], which contributes
to a better quality of the captured acoustic signals.

All microphones are connected to pre-amplifiers to amplify the
received signals (factor: 100). The amplified signals are then
relayed to a Macbook Pro laptop computer for data processing
via an audio interface (Fireface 800). The audio interface
samples the audio at 44,100Hz. The laptop runs a software
program written in C language using the PortAudio library
to communicate with the audio interface. The data read from
the audio interface is then sent to a Java program for real-time
processing over network socket.

Data Processing Pipeline
The processing of the received data stream (four channels) can
be divided into three steps as described below and shown in
figure 6. Channels 1 to 4 of the audio interface are mapped to
the signals from the four microphones, respectively.

Chirp Localization
In order to recognize a given pose, we first explicitly localize
(temporally) each chirp within the continuous data stream –
segmentation. Channel 1 is the signal from the microphone
right next to the speaker. The amplitude of the chirp is highest
here and least influenced by potential other noise. We perform
peak localization on the audio signal of this channel by finding
the maximum absolute amplitude, and then segment the chirps
from all four –synchronized– channels using a window size
of 0.046 seconds (2,048 data points to facilitate the use of
Fast Fourier Transformation) centered at the peak position
extracted from the first channel.

Pose Segmentation
Pose segmentation is based on comparison to a reference sig-
nal. This reference signal is recorded during system start when
we ask a user to hold their hand still and open –that is to not
perform any pose– and record the received signals from all
four microphones as reference.

For each segmented chirp, we perform Faster Fourier Trans-
form (FFT) to extract the energy distribution across frequency
0-10kHz. To detect whether a pose is performed, we calculate
the Euclidean distance of the FFT results between the current
chirp and the reference chirp recorded during system start as
described above. If the distance is larger than an empirically
determined threshold, we infer that a pose is being performed.
We then use the subsequent 0.5 seconds of data from all four
channels for the hand pose recognition. This data is also saved
for post-analysis.
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Figure 6. Data Processing Pipeline

Pose Recognition
In the second step, we extract features from each chirp col-
lected from the four channels. For each chirp, we first pass it
through a band-pass filter (100 Hz – 5,500 Hz), which is the
most informative frequency range based on early exploration.
On the filtered chirp. we then extract 35 features, namely:
zero crossing rate, energy, entropy, spectral centroid, spectral
flux, spectral chroma, spectral roll-off, and Mel-frequency
cepstral coefficients [7]. Then we extend the feature vector to
294 by adding the dominant frequency and its energy, as well
as spectral energy bins from 100 Hz to 5500 Hz as extracted
through the FFT. Finally, we combine the feature vectors of all
four channels resulting in a global descriptor of dimensionality
d = 1,176, which is then fed into a support vector machine
pose classification backend. We use the sequential minimal op-
timization (SMO) implementation of SVM provided by Weka
[18].

Since the pose segmentation step actually sends data segments
of a length of 0.5 seconds for pose recognition and each chirp
takes 0.1 seconds, each channel may contain up to 5 chirps.
The final recognition result of a particular pose is thus based on
majority voting over the five individual chirp classifications.

USER STUDY
To evaluate the performance of FingerPing and to understand
how users would use our system, we conducted a user study
with 16 participants (10 male; average age of 26.6). 8 ran-
domly selected participants were requested to test the first pose
set (tapping on 12 phalanges) and the remaining 8 participants
were instructed to evaluate the second set of poses (digits ’1’
to ’10’ from American sign language).

At the beginning of the study, a researcher first introduced
and demonstrated the poses that the users were required to
perform. Then the researcher helped the participant to put on
the system hardware on their hand and wrist. Each participant

was allowed to practice each pose before they proceeded to
the actual test. Participants were sitting on a chair duing the
study.

The study consists of seven separate sessions. During each
session the participants were given visual prompt for the pose
to be performed. The first session was a practice session,
where each participant was instructed to perform all the poses
in a random order with five instances per hand pose. Sessions
2 through 5 were used for collecting the training data, in each
of which the participants were requested to perform each pose
in a random order with five instances per pose. No feedback
was given for these first 5 sessions. The last two sessions were
used as testing sessions, where the participants were instructed
to perform each pose five times in a random order. Unlike
the practice and training sessions, the participants were given
feedback for real-time classification results. If the classified
pose was recognized as the one the participant was asked
to perform then the interface showed an icon of green (red
otherwise). Manual ground truth annotation was provided by
observing researchers during the user study.

Results
We removed the mis-performed poses caused by the partic-
ipants from the final analysis, where participants failed to
perform the hand pose as the stimuli indicated. We dropped 87
out of 1760 instances (22 gestures * 80) from 16 participants.
As a result, after removing mis-performed poses, there are
1.5 false positive errors in average in each testing session for
both two pose sets. The average accuracy across all partic-
ipants for the phalanges pose and American sign language
are 93.77% and 95.64% respectively. The confusion matrix
for the two poses sets is shown in Figures 10 and 11, respec-
tively. For 12 phalange poses, recognition was most accurate
for touch events involving the little finger, least accurate when
the middle finger is targeted, which can be explained through
the very similar path propagation compared to both index and
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ring finger. The other common confusion exists between the
similar positions in the neighbor fingers. For instance, 6.58%
little-distal was misclassified as ring-distal and 6.67% middle-
middle was misclassified as index-middle. Figure 9 shows the
accuracy for 12 phalanges respectively.

For ASL poses, number ’10’ presents the highest accuracy of
100% and number ’5’ has the lowest accuracy 90.54%. We
think the reason why ’10’ is the most accurate pose is that it is
very different from any other poses as figure 3 shows. We also
noticed there were much confusion between poses ’7’,’8’ and
’9’, which look similar in shapes. Figure 7 and figure 8 show
the accuracy for each participant on phalanges and ASL poses.
It shows that participants in general achieved a relatively high
accuracy on recognizing ASL hand configurations. Also, we
received some participants reporting tiredness at the end of the
study. This was an issue of the study setup, which required
the participants to keep focused on performing different hand
poses for around 30 minutes, which is rarely the case in daily
scenarios.

Figure 7. Accuracy for each participant on Phalanges poses

Figure 8. Accuracy for each participant on ASL poses

DISCUSSION

Applications
One obvious application for the phalange pose set is to use
them directly for a number input system due to structural
similarity and human intuition. If the layout is mapped to a
T9 keyboard, it can be extended to be used as an input system
for text as well.

Depending on the applications, these poses can be combined
or selected to form new pose sets which may influence the

Figure 9. Accuracy for 12 Phalanges (Rounded to nearest integer)

recognition accuracy. Many applications do not need to have
all 12 poses to be functional. For instance, to control a music
player, generally only four buttons (next song, previous song,
pause, play) are needed, which can be mapped with the distal
of the four fingers in phalange pose set with an accuracy of
93.69% in post-analysis using the data collected in the user
study. Similarly, we can also use a subset of the phalange poses
to control a D-Pad , which is very helpful to navigate through
menus with hierarchy on wearables (e.g., Google Glass, smart
watches). The buttons of D-Pad can be naturally mapped to
the index-middle, middle-distal, middle-proximal and ring-
middle positions. Another interesting mapping can be to use
the four corner phalanges (index-distal,index-proximal,little-
distal,little-proximal), which presented 94.55% accuracy in
our post-analysis. These four poses can be used to control
music player or shortcuts to applications.

Hardware Improvement
In the current hardware setting, the surface mounted speaker
is directly taped on the thumb. However, we actually built
different shapes of 3D-printed rings (hard plastic material) to
attach the speaker to the thumb. Unfortunately, due to the
relatively large size and the rigid shape of the speaker, this
solution did not fit well with everyone’s hand. One potential
solution in the future is to 3D-print rings with flexible material
(e.g., rubber), which would be adjustable for different thumb
sizes. Another drawback of taping the speaker on the thumb
is the airborne communication. In the study, the chirps are au-
dible in the quiet study room. Future design of the ring should
consider isolating the speaker to airborne communication by
wrapping it up with sound-absorbing material, such that the
speaker would not generate much noise to the environments
surrounding the participant.

Addressing false-positives
The current implementation utilizes a threshold-based segmen-
tation method to detect the start of the interaction, which can
be prone to noise in tough scenarios, such as when the user’s
hands are touching different objects. One way to address this,
is to apply more advanced machine learning pipeline (e.g., hid-
den Markov model) to automatically transit between different
states with a much larger set of training data. The other possi-
ble solution is to introduce an activation pose. For instance, to
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Figure 10. Confusion Matrix for recognizing touch events related to the 12 phalanges.

Figure 11. Confusion Matrix for recognizing 10 poses from American Sign Language.

activate the system, the user needs to tap on three phalanges
on index finger in a certain, specific sequence, which is hard
to trigger by accident. Therefore, the system stays inactive
during regular activities and would only be active once the
user chooses to perform the activation pose. The activation

pose can be selected from the most distinguishable poses such
as ’10’ in the American Sign Language.
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Calibration
One limitation of the current system is its potential user or
session dependency. A user may need to provide reference data
during system start. The reason for this is that the composition
(tissue, bones) of the human body is different for each person,
which impacts acoustic frequency response. Certainly, with
large amounts of training data from huge user cohorts one
could create a generic, user-independent (baseline) model.
Utilizing more training data, is to attempt a user adaptive
system, where we match a few training gestures made by the
user to similar-seeming past users and load in those users’
training data (or have a user independent model where we re-
train with the addition of the new training gestures, weighted
highly). Going further, we may discover a calibration process
can minimize the per session or per user differences. The
calibration process could be incorporated into the use of device.
For example, we might require the user to perform a few poses,
explicitly chosen to represent the space of input, to "pair" the
device to a phone - for example, 6, 9,1, and 10 (thumbs-up).
Alternatively, instead of a single pose, we can require that valid
input requires a sequence of poses (i.e., a gesture), selected
so that using the change in features for recognition is more
session/user independent. Also, sensor placement consistency
may be improved by well-designed form factors in the future.
More experimentation is needed to prove the effectiveness
of these approaches. In this current research, we focused
on the general proof-of-concept and left the refinement to a
user-independent (baseline) model for future work.

Limitation
Another limitation of the current system is its user dependency.
A user needs to provide reference data during system start.
The reason for this is that the composition (tissue, bones) of
the human body is different for each person, which impacts
acoustic frequency response. Certainly, with large amounts
of training data from huge user cohorts one could create a
generic, user-independent (baseline) model. However, given
that the initialization is very short and would only be required
when a user first puts the sensing device on, in this current
research we focused on the general proof-of-concept and left
the refinement to a user-independent (baseline) model for
future work.

Future Work
In this paper, we have provided preliminary evaluation re-
sults on recognizing 22 hand poses, including 10 from Amer-
ican Sign Language. Our natural next step is to explore the
recognition of the whole 26 characters in the American Sign
Language, which requires much longer practice and training
sessions. Note that no structural changes would be required
for scaling up the system from the current proof-of-concept to
a full alphabet ASL recognizer. Also, while our current results
focus on poses to show the concept, the same apparatus should
work for gesture with the addition of Dynamic Time Warping
or Hidden-Markov-Model for recognition.

The current system requires 0.5 seconds of touch data to recog-
nize hand poses, which limits the theoretical maximum input

speed to 2Hz. The length of chirps can be potentially short-
ened to enable faster input speed, which we plan to investigate
in the next step.

The development of the current prototype was focused on
the proof-of-concept of the general apparatus as well as the
sensor data analysis pipeline. Wider application would require
engineering a more compact and especially wireless system.
Given the availability of miniaturized, and energy-efficient
wireless components, such a development does not represent
a substantial burden that would be impossible to overcome.

CONCLUSION
In this paper, we presents FingerPing, a active acoustic sens-
ing technology that can recognize fine-grained hand poses by
analyzing how the frequency response changes after traveling
through different paths in hands. A user study with 16 partici-
pants shows that FingerPing can recognize the tap locations
at 12 phalanges and 10 poses from ASL with an accuracy of
93.77% and 95.64% respectively.
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