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Abstract
We introduce MunchSonic, an AI-powered active acoustic sens-
ing system integrated into eyeglasses to track fine-grained dietary
actions. MunchSonic emits inaudible ultrasonic waves from the
eyeglass frame, with the reflected signals capturing detailed po-
sitions and movements of body parts, including the mouth, jaw,
arms, and hands involved in eating. These signals are processed
by a deep learning pipeline to classify six actions: hand-to-mouth
movements for food intake, chewing, drinking, talking, face-hand
touching, and other activities (null). In an unconstrained study with
12 participants, MunchSonic achieved a 93.5% macro F1-score in a
user-independent evaluation with a 2-second resolution in tracking
these actions, also demonstrating its effectiveness in tracking eating
episodes and food intake frequency within those episodes.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.
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1 Introduction
Tracking dietary activity is crucial for measuring nutrition levels
and managing chronic diseases. However, the lack of reliable auto-
mated dietary monitoring systems forces most people to rely on
manual input-based applications, which are prone to self-reporting
errors. To address this, researchers have developed wearable di-
etary activity recognition systems. Despite advancements in sens-
ing modalities and machine learning algorithms to process the data,
tracking fine-grained dietary actions such as food intake, chewing,
and drinking, while distinguishing them from similar body move-
ments like talking, or face touching, as well as from non-eating
activities, remains a significant challenge for the wearable comput-
ing research community.

Dietary activities such as eating and drinking require coordi-
nated hand, jaw, and mouth movements. Detecting fine-grained
dietary actions necessitates the simultaneous tracking of both hand
and mouth movements. Current state-of-the-art dietary monitor-
ing systems, whether on eyeglasses [4, 42, 53], earables [10], or
smartwatches [75], require sensing modalities at multiple body lo-
cations to achieve this, which can be costly, power-inefficient, and
cumbersome for many users.

Recently, the active acoustic sensing systemActSonic [40] showed
promising efficacy in tracking everyday activities, including identi-
fying eating and drinking episodes, using a single point of instru-
mentation on eyeglasses. However, this system has not yet been
able to predict fine-grained dietary actions, such as chewing or
hand-to-mouth intake gestures, which are related to important
biomarkers for longitudinal health monitoring [55], such as chew-
ing patterns, drinking habits, or snacking behaviors. In this paper,
we aim to address the following research question:

• Can an active acoustic sensing system instrumented on smart
glasses be used to further distinguish fine-grained dietary ac-
tions in unconstrained environments beyond only identifying
eating moments?

To address this challenge, we developed MunchSonic, a fine-
grained dietary action recognition system in the form factor of
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commodity eyeglasses using active acoustic sensing. Similar to
ActSonic [40], our system employs two pairs of microphones and
speakers attached to the hinges of the eyeglasses. MunchSonic
transmits inaudible ultrasonic waves that reflect off various body
parts, generating a two-dimensional echo profile, which serves
as a range spectrogram of the scanned body parts. This profile is
then analyzed by a lightweight deep learning framework to infer
fine-grained dietary actions.

MunchSonic is based on the observation that fine-grained dietary
actions involve movements of the mouth, jaw, and arms, which can
be inferred from reflected ultrasound, as shown in prior work [28,
37, 39? ]. However, the capacity of the active acoustic sensing-based
general-purpose activity recognition systemActSonic [40] is limited
to tracking moments of eating and drinking episodes. Since eating
is a complex activity involving several fine-grained dietary actions
such as hand-to-mouth movement for intake, chewing, swallowing,
etc., we designed the MunchSonic system specifically for tracking
body parts involved in eating, with modifications to ActSonic [40]
hardware and inference pipeline. We evaluated our system in a
user study with 12 participants in unconstrained environments of
their choice. The results showed that MunchSonic can accurately
recognize fine-grained dietary actions such as hand movements
for intake, chewing, and drinking, as well as non-dietary actions
like talking, face touching, and other activities (null), achieving an
F1-score of 93.5%.

The contributions of the MunchSonic system are as follows:

• Advanced the knowledge of wearable-based active acous-
tic sensing by demonstrating the feasibility of using active
acoustic sensing on glasses to recognize fine-grained dietary
actions beyond only identifying eating moments.

• Evaluation of the proposed system through a 12-participant
user study in unconstrained environments, with ground
truth data annotated for each second.

2 Related Work
Various wearable devices with different sensing modalities have
been proposed to track eating events. This section discusses non-
eyeglass wearables, followed by eyeglasses. Table 1 summarizes
prior studies on tracking eating activities.

Form Factors Other than Eyeglasses. Smartwatch-based sys-
tems for eating [15, 32, 51, 60, 61, 68, 75] and drinking [25] use IMUs
to track hand-to-mouth gestures but face challenges distinguish-
ing similar motions, leading to high false positives [12, 41, 62, 63].
Ear-worn devices, or earables, track eating bymonitoring jawmove-
ment through in-ear proximity sensing [7, 8], passive acoustic
sensing [10, 23], or both [5]. Neckbands [18, 46, 67] and neck-
laces [1, 13, 29, 54, 76] use passive acoustic and proximity sensing to
track chewing and swallowing. Despite advancements and around
80% accuracy in free-living conditions, neckband and necklace form
factors have not gained the same popularity as other wearables [3].

Eyeglasses Form Factor. Dietary monitoring using eyeglasses
is promising due to their proximity to the mouth and jaw and higher
social acceptance [31] (64% adoption in the US [21]). Researchers
have used EMG electrodes [72], piezoelectric sensors [19, 20], iner-
tial sensors [21], and load cells [14] on eyeglasses to track eating
behaviors. Sensor fusion approaches [4, 6, 42, 47, 53], integrating

gyroscopes, accelerometers, proximity sensors, and microphones,
have shown improved performance. Passive acoustic sensing using
contact microphones [10] captures chewing sounds but requires
close skin contact. Systems using acoustic sensing [40, 43] focus on
eating episodes rather than fine-grained actions.

In summary, MunchSonic is the first to use active acoustic sens-
ing on eyeglasses to infer fine-grained dietary actions by capturing
jaw and hand movements. This allows for detailed dietary action
extraction, such as intake and chewing, unlike other systems that
primarily track moments of eating episodes.

3 System Implementation
The goal of MunchSonic is to capture the information related to
movements on multiple body parts involved in dietary activities
using an eyeglasses form factor. Previous research has shown ac-
tive acoustic sensing’s efficacy on wearables in tracking facial
muscle movements [36, 37, 58, 73, 74], upper body limbs [39],
hand poses [34, 69], gaze [35], respiration [65], sign language ges-
tures [27, 28], physiological signals [17] and everyday activities [40].
Inspired by these prior works, especially [40], MunchSonic inte-
grates active acoustic sensing into eyeglasses to track these fine-
grained dietary actions. This section discusses the active acoustic
sensing mechanism, the hardware implementation, and the deep
learning framework for processing the captured data.

3.1 Sensing Mechanism
The design of MunchSonic’s sensing system is inspired by the
active acoustic sensing approach from [40]. In essence, MunchSonic
uses a similar active acoustic sensing processing method, based on
cross-correlation-based Frequency Modulated ContinuousWave (C-
FMCW) [65]. These chirps are transmitted from eyeglasses’ hinges,
with frequency ranges of 18-21.5 KHz and 21.5-24.5 KHz for the
left and right transmitters, respectively. The receiver samples at 50
KHz, with each chirp containing 600 samples and a sweep period
of 0.012 seconds. The system can detect changes as small as 3.43
mm, given the slow speed of mouth, jaw, and hand movements
compared to the speed of sound (343 m/s). The sensing range is
up to 2.058 meters, though a shorter range is used for fine-grained
dietary actions. MunchSonic uses a lower amplifier gain compared
to [40] to focus on mouth, jaw, and hand movements near the
face for tracking fine-grained dietary actions. Consequently, the
microphones receive weaker reflections from lower body parts that
are not involved in dietary actions.

MunchSonic’s signal processing pipeline involves computing
the cross-correlation of transmitted and received ultrasonic waves.
The received signal is first filtered through a bandpass filter (18-21
KHz and 21.5-24.5 KHz) to eliminate audible frequencies. The cross-
correlation output, called the Echo Profile, functions as a Range-FFT
using acoustic C-FMCW waves. The Echo Profile is processed as a
two-dimensional tensor (𝑥-axis: time, 𝑦-axis: distance from Munch-
Sonic eyeglasses form factor). To capture body part movements and
eliminate static object reflections, the first derivative of the Echo
Profile, termed the Differential Echo Profile, is used as input for the
deep learning architecture to track fine-grained dietary actions.
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Year Study Wearable Sensing
Modalitie(s)

Detected
Event(s)

Evaluation
Metric

Power
Consumption

2017 EarBit [5] Outer Ear
Interface

IMU, IR Proxomity
Sensor, Microphone Chewing F1-score = 80.1% -

2017 GlasSense [14] Eyeglasses Load Cell Head Movement,
Talking, Chewing F1-score = 94.0%∗ -

2017 Mirtchouk et al. [42] Google Glass IMU, Microphone,
Motion Sensor Meals Precision = 31%

Recall = 87% -

2018 Auracle [10] Earpiece Contact
Microphone

Eating
Episodes F1-score = 77.5% 14.47 mW

2018 Zhang et al. [72] Eyeglasses EMG Electrode Eating
Event F1-score = 77% 81.96 mW

2020 FitByte [4] Eyeglasses
1 Camera,
1 Proximity
Sensor, 6 IMUs

Eating and
Drinking
Episodes

Precision = 82.8% (Eat-
-ing), 56.7% (Drinking)
Recall = 93.8% (Eating),
65.5% (Drinking)

105.08 mW

2022 MyDJ [53] Eyeglasses Accelerometer,
Piezoelectric

Eating
Episodes F1-score = 92% 26.06 mW

2024 MunchSonic Eyeglasses Active Acoustic
Sensing

Intake, Chewing, Drink-
-ing, Talking, Face Touch F1-score = 93.50% 96.5 mW†

Table 1: Comparison of eating detection studies based onwearable form factors, sensingmodalities, event granularity, evaluation
metrics (F1-score or precision/recall), and power draw (mW). Asterisks (∗) in the Evaluation Metric column indicate lab study
evaluations; otherwise, evaluations were in free-living conditions. The dagger symbol (†) in the Power Consumption column
indicates machine learning inference was performed on a cloud or mobile device, not the wearable.

3.2 Hardware and Form Factor
We replicated the sensing system from ActSonic [40] with minor
changes to the sensors and controller unit, using the OWR-05049T-
38D speaker and ICS-43434 microphone [59]. Our customized con-
troller unit, shown in Figure 1(b), features the nRF52840 microcon-
troller [50], twoMAX98357A audio amplifiers, a BLE SGW1110 [52]
module, power management modules, and an SD card slot with
a SanDisk Extreme Pro microSD card [2], optimized for power
efficiency. The transceiver boards, each with a speaker and micro-
phone, are attached to the eyeglass hinges, with placement refined
for optimal tracking of mouth, jaw, and hand movements. The con-
troller unit and LiPo battery are attached to one leg of the glasses
frame, connected via Flexible Printed Circuit (FPC) cables and a JST
connector. The sensing system on the eyeglasses draws 96.5 mW of
power for collecting data, with a voltage of 4.02V and a current of
24.0 mA. The prototype used in the MunchSonic study, featuring a
290 mAh LiPo battery, lasts approximately 11.25 hours in SD card
storage mode.

Figure 1: MunchSonic Hardware and Form Factor: (a) User
wearing eyeglasses form factor, (b) Customized controller
unit with nRF52840 microcontroller, (c) Top view of the eye-
glasses form factor, (d) MunchSonic transceiver for active
acoustic sensing housing one speaker (top) and one micro-
phone (bottom).

3.3 Deep Learning Framework
3.3.1 Data Processing and Model Architecture. We designed a light-
weight deep learning framework to process the active acoustic data
captured by the MunchSonic system. The differential echo profile
described in Section 3.1 serves as the input to the model. We create
overlapping sliding windows from the differential echo profile data.
To augment the data, we apply Gaussian noise to 5% of the windows
and mask 5% of the distance axis to simulate environmental noise
and unrelated movements.

The preprocessed slidingwindows are fed into aMobileNetV2 [48]
convolutional neural network encoder, which generates a 256-
dimensional embedding vector for each window. This vector is
then fed into a classifier network with three feedforward layers
(128, 64, and 6 neurons). Each layer, except the last, includes batch
normalization [26], dropout [57] with a probability of 0.25, and
Leaky ReLU [66] activation. Finally, a softmax operation provides
the class probability distribution.

3.3.2 Model Training. The input to MunchSonic’s deep learning
framework consists of sliding windows of differential echo profiles,
optimally 2 seconds long with 50% overlap. This window length fits
an eating intake gesture. The optimal sensing range is 150 pixels
on the 𝑦-axis of the differential echo profile, corresponding to 51.45
cm from the MunchSonic device. With speakers and microphones
on each hinge of the eyeglasses, transmitting acoustic waves in two
frequency ranges, there are four channels in the differential echo
profile. Thus, the shape of the input window is (4 × 150 × 166), as
each second contains 83 samples.

We use focal loss [38] for training to handle class imbalance in
the MunchSonic dataset. The Adam [30] optimizer with a cosine
annealing learning rate scheduler starts with an initial learning
rate of 10−2. The model, implemented using PyTorch and PyTorch
Lightning, is trained for 30 epochs with a batch size of 128 on
GeForce RTX 2080 Ti GPUs.
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4 User Study
We conducted a 45-minute user study to evaluate MunchSonic in an
unconstrained setting. Building on ActSonic’s [40] success in track-
ing eating and drinking episodes with high F1 scores, the Munch-
Sonic study assumed active acoustic sensing on glasses can dis-
tinguish eating moments from other activities. This paper focuses
on extracting fine-grained dietary actions, such as hand-to-mouth
movements, chewing, and drinking. The study aimed to assess the
system’s performance in tracking these actions and distinguishing
them from non-eating activities in real-world conditions. We con-
ducted a shorter-duration free-living study, leveraging ActSonic’s
proven efficacy in longer studies. Ground truth annotationwas done
per second, unlike other systems [53] that rely on self-reporting,
enabling high-resolution recognition of dietary actions.

Study Protocol We conducted a user study approved by our
organization’s Institutional Review Board (IRB) with 13 partici-
pants, 6 identifying as male and 7 as female, with an average age of
26.5 years, ranging from 21 to 36 years. The participants wore the
MunchSonic eyeglasses form factor and a chest-mounted GoPro
HERO9 camera [24] facing upward to capture their eating activities
around the face as the ground truth. The camera recorded 720p
video at 30 fps with a diagonal field of view of 148◦. Note that one
participant (P09) accidentally turned off the chest-mounted camera,
resulting in no ground truth data for that participant. Therefore, we
discarded that participant from the study and evaluated the system
on the remaining 12 participants.

Figure 2: User study in unconstrained conditions: (a) Foods
consumed by user study participants, (b) Sample images of
the chest-mounted camera view of MunchSonic data collec-
tion pipeline.

Participants were asked to bring a meal (breakfast, lunch, or
dinner) from any source (home-cooked or restaurant) and come to
the lab. After briefing them about the study procedure, we equipped
them with the MunchSonic eyeglasses and the chest-mounted cam-
era. We verified the data collection system with a short 5-minute
session. Once verified, the data collection system was started, and
participants were free to go anywhere while wearing the eyeglasses
and camera. The only requirement was to finish the meal they
brought to ensure sufficient samples of dietary movements. Apart
from that, they could continue with their daily routine. The total
duration of this unconstrained study was 45 minutes. Upon com-
pletion, participants returned to the lab to return the devices and
were reimbursed with a $20 USD gift card.

Dataset Statistics We collected 540 minutes of data from 12
participants. Two researchers labeled the reference video from the
chest-mounted camera at each second using the ANU-CVML Video
Annotation Tool (Vidat) [71]. The inter-rater reliability was mea-
sured through Cohen’s Kappa [33], 𝜅 , and its value is 0.82 (𝜅 > 0.80
denotes near perfect agreement, and 0.6 < 𝜅 ≤ 0.8 denotes satis-
factory agreement). The camera view that the annotators labeled
is shown in Figure 2(b). The data was categorized into six classes:
hand-to-mouth movement for food or drink intake, chewing, drink-
ing, talking, face touch, and a null class for other activities. The
annotators were instructed to segment the actions in two phases.
First, they determined whether the action was eating or non-eating.
If the action was identified as eating, they further categorized it into
fine-grained actions such as hand-to-mouth movement, chewing,
and drinking. Swallowing was integrated into the chewing category.
For non-eating actions, they segmented the activities into talking,
face touching, and other activities not included in the tracking
set. A synchronization script was used to extrapolate ground truth
labels for the differential echo profile sliding windows. The class
distribution was 53.5% null, 5.9% hand-to-mouth for food intake,
22.0% chewing, 2.2% drinking, 15.1% talking, and 1.3% touching face
with hand for non-eating activities.

5 Performance Evaluation
We computed precision, recall, and macro F1-score to assess Munch-
Sonic’s ability to track fine-grained dietary actions. Evaluations
were conducted at two levels: frame-level inference for each two-
second sliding window and episode-level inference for intake count
and chewing time estimation. Employing a leave-one-participant-
out evaluation strategy enabled user-independent assessment, using
data from one participant as the test set and the remaining 11 for
training and validation. This evaluation demonstrates the system’s
performance without requiring training data from new users, which
makes the system easier to deploy at scale.

5.1 Evaluation of Frame-Level Inference

Figure 3: Precision and recall of leave-one-participant-out
evaluation of MunchSonic, where data from each participant
on the 𝑥-axis serves as the test set.

We summarize the results of the leave-one-participant-out eval-
uation of sliding window prediction in Figure 3. According to the
evaluation, the average macro F1-score across all 12 participants
is 0.935 with a standard deviation of 0.031. It is evident that the
MunchSonic system can track fine-grained dietary events with
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precision and recall of more than 90% for most participants. P08
demonstrates the worst performance in terms of both precision
and recall. Additionally, P04 and P13 yielded slightly lower recall
compared to the average. Our analysis of the ground truth videos
for those participants suggests that the slightly worse performance
can be attributed to the participants touching their faces several
times during the study for activities not related to eating. This phe-
nomenon is also evident in the confusion matrix in Figure 4. The
performance degradation of MunchSonic for face-touch actions can
be related to the imbalanced nature of the dataset collected in a
completely unconstrained manner, which contains very few sam-
ples of this particular activity. Nonetheless, MunchSonic exhibits
robust performance across all activities, with a mean precision and
recall of 0.941 ± 0.027 and 0.930 ± 0.041 respectively, across all 12
participants.

Figure 4: Normalized confusion matrix from the leave-one-
participant-out evaluation across 12 participants in the user
study of MunchSonic. The values in parentheses represent
the total number of instances for each cell.

5.2 Evaluation of Episode-Level Inference

Figure 5: Episode-level evaluation of MunchSonic: (a) Seg-
mentation of user study data into 4.5-minute-long episodes,
(b) Detection of food intake within each episode.

5.2.1 Eating Episode Detection. To evaluate MunchSonic in de-
tecting eating episodes and intake counts within episodes, we seg-
mented the 45-minute data collected from each participant in the
user study into 10 segments of equal length (4.5 minutes each). Ac-
cording to the definition provided in [60, 75], if a segment of length
𝑡𝑤 contains 𝑡𝑤+20

5 intakes, which is 5 intakes for the aforementioned

segments, then that segment is defined as an eating episode. To
evaluate MunchSonic’s efficacy in detecting these eating episodes,
we deployed a majority voting strategy where a segment is la-
beled as an eating episode if 50% of the frames are labeled as either
food_intake or chewing. The number of undetected eating episodes
for the MunchSonic dataset is 1 out of 43 ground truth episodes,
resulting in a False Negative Rate of 0.023. Additionally, there were
77 non-eating episodes in the dataset, of which 2 were incorrectly
detected as eating by MunchSonic, leading to a False Positive Rate
of 0.026.

5.2.2 Food Intake Counting. Furthermore, to count the number of
intakes in each segment, we increment the intake count for that
segment by 1 if we find one food_intake frame followed by at least
two chewing frames or windows within the next 3.0 seconds. We
compute the Mean Absolute Error (MAE) between the ground truth
number of intakes and the predicted count as a metric to evaluate
this. The average ground truth intake count in one 4.5-minute
eating segment (containingmore than 5 ground truth intakes within
the timeframe) and non-eating segment (containing fewer than 5
ground truth intakes) is 17.65 and 1.19, respectively. The MAE
for counting intakes in the eating segments is 2.01, leading to an
average error of 11.39% in predicting the number of eating intakes.
For the non-eating segments, the MAE for counting intakes is 0.047,
leading to a mean error of 3.95% in predicting the intake counts
during non-eating episodes.

5.2.3 Chewing Time Estimation. To evaluate the coverage of pre-
dicted chewing time, we calculate the Mean Absolute Error (MAE)
between the total ground truth chewing time in a 4.5-minute episode
and the predicted chewing time, measured in seconds, across all 12
user study participants. The average chewing time across eating
episodes is 163.6 seconds (2.73 minutes) and 9.17 seconds for non-
eating episodes in the MunchSonic dataset. Interpolating from the
frame-level predictions of MunchSonic, the MAE of the estimated
chewing time for eating episodes is 12.87 seconds, leading to a
coverage of 92.13% of chewing time. For the non-eating episodes,
the MAE of the estimated chewing time is 1.61 seconds, leading
to a coverage of 82.5%. This higher coverage across non-eating
episodes indicates MunchSonic’s potential in detecting snacking
events, which was outside the scope of the user study.

6 Discussion
Analyzing the Passive Sensed Ultrasonic Range for Tracking
Dietary Actions Theoretically, our system focuses on nearly in-
audible sound frequencies above 18 KHz, which should not interfere
with most daily activities, including eating. However, some eating
sounds can have frequency components above 18 KHz. To evaluate
the impact of these passively sensed ultrasonic signals on distin-
guishing dietary actions, we conducted a preliminary study with
one researcher as a participant. In this study, we turned off Munch-
Sonic’s speakers to prevent them from transmitting C-FMCWchirps
and performed the same set of activities as in the user study. The
microphones continued to record the surrounding acoustic signals.
We then created differential echo profile windows and trained the
MunchSonic deep learning model. The mean cross-session macro
F1-score for this user-dependent model was 0.322. In contrast, with
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Figure 6: Differential echo profiles of actions with active and passive acoustic sensing. The 𝑥-axis represents time, and the
𝑦-axis represents the echo distance from the MunchSonic form factor, ranging from 0 cm to 50 cm.

the speakers transmitting ultrasonic chirps, the mean cross-session
macro F1-score was 0.976. As illustrated in Figure 6, active acoustic
sensing plays a crucial role in distinguishing dietary activities by
tracking the movements of body parts involved in dietary actions.
While passive ultrasonic signals might have a minor impact on
detecting fine-grained events, quantifying this impact numerically
is challenging and beyond the scope of this paper. Our experiments
indicate that chewing crunchy foods generated more ultrasonic
components in the spectrogram. However, the signal strength of re-
flections from MunchSonic’s transmitted ultrasonic chirps is much
higher, potentially overshadowing the passively sensed compo-
nents’ feature importance. Further investigation into this will be
left for future work.

Impact of Sensing Range and Temporal ContextWe eval-
uated the impact of sensing range and temporal context for the
MunchSonic system. Figure 7 shows that a sliding window size
of 2.00 seconds with a 50% overlap yields the best tracking per-
formance. We also found that a sensing range of 50 to 80 cm is
optimal for tracking fine-grained dietary actions. This is because
most movements related to dietary actions occur in the jaw and
mouth region, within 30 cm of the eyeglasses form factor. Addi-
tionally, MunchSonic tracks hand movements for food intake, so
extending the sensing range to 50 cm yields the best performance.
Poorer performance at longer ranges is likely due to various unre-
lated activities occurring in that region.

Figure 7: Ablation study to measure the impact of sensing
range and sliding window size on the performance of Munch-
Sonic. Here, all the sliding window sizes mentioned have a
50% overlap.

Comfort and Safety of Wearing MunchSonic Prototype
After participating in the user study described in Section 4, partic-
ipants completed an IRB-approved questionnaire on the comfort
of wearing the MunchSonic prototype. They rated their comfort
from 0 (most uncomfortable) to 5 (most comfortable), with a mean
rating of 3.462 and a standard deviation of 1.050. Since MunchSonic
operates using the ultrasonic range, participants were not expected
to hear anything from the system, and indeed, none reported hear-
ing any noise. Three participants noted that the prototype did not
fit their head sizes and prescription lenses well, which could be
addressed in future iterations by creating an attachable sensing
module. Additionally, one participant mentioned that the chest-
mounted camera used for ground truth acquisition occasionally
touched their dining table, interrupting their eating.

We measured the transmitted signal intensity using a CDC-
provided app [11], finding it to be 68 dB(A), below the NIOSH
limit of 85 dB [45]. While MHz range ultrasonic exposure can cause
discomfort [44], MunchSonic operates in the KHz range with no re-
ported issues. Future studies will explore potential audibility among
animals and children.

Potential Application Scenarios We envision MunchSonic
being useful for eating behavior assessment, chronic disease man-
agement, and overall well-being. Our system passively and objec-
tively measures eating episodes andmicro-level actions (e.g., pauses,
drinking, chewing) in real-world settings. By accurately classifying
these actions, we can derive meal micro-structure metrics [9] like
eating duration, speed, and chewing rate, traditionally assessed
through interviews or self-report questionnaires [49], which are
prone to biases. Our automated approach provides precise, natu-
ralistic data. Clinical studies link these metrics to health outcomes
like higher Body Mass Index [56, 64], eating disorders [16, 22], and
metabolic diseases [70]. Accurate assessment enhances monitoring
and management of these conditions, facilitating real-time inter-
ventions. A day-long evaluation of MunchSonic will provide crucial
insights into snacking behavior and bulimia or binge eating disorder
detection.

Acknowledgements
This project was supported by the National Science Foundation
Grant No. 2239569 and partially by the Cornell University IGNITE
Innovation Acceleration Program.

101



MunchSonic: Tracking Fine-grained Dietary Actions through Active Acoustic Sensing on Eyeglasses ISWC ’24, October 5–9, 2024, Melbourne, VIC, Australia

References
[1] Nabil Alshurafa, Haik Kalantarian, Mohammad Pourhomayoun, Jason J Liu,

Shruti Sarin, Behnam Shahbazi, and Majid Sarrafzadeh. 2015. Recognition of
nutrition intake using time-frequency decomposition in a wearable necklace
using a piezoelectric sensor. IEEE sensors journal 15, 7 (2015), 3909–3916.

[2] Amazon.com. [n. d.]. SanDisk Extreme Pro 32GB SDHC UHS-I Card
(SDSDXXG-032G-GN4IN). https://www.amazon.com/SanDisk-Extreme-32GB-
UHS-I-SDSDXXG-032G-GN4IN/dp/B01J5RHBQ4. [Online; accessed 21-May-
2024].

[3] Judith Amores, Mae Dotan, and Pattie Maes. 2019. An exploration of form factors
for sleep-olfactory interfaces. In 2019 41st annual international conference of the
IEEE engineering in medicine and biology society (EMBC). IEEE, 1456–1460.

[4] Abdelkareem Bedri, Diana Li, Rushil Khurana, Kunal Bhuwalka, and Mayank
Goel. 2020. FitByte: Automatic DietMonitoring in Unconstrained Situations Using
Multimodal Sensing on Eyeglasses. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (<conf-loc>, <city>Honolulu</city>,
<state>HI</state>, <country>USA</country>, </conf-loc>) (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3313831.3376869

[5] Abdelkareem Bedri, Richard Li, Malcolm Haynes, Raj Prateek Kosaraju, Ishaan
Grover, Temiloluwa Prioleau, Min Yan Beh, Mayank Goel, Thad Starner, and
Gregory Abowd. 2017. EarBit: using wearable sensors to detect eating episodes
in unconstrained environments. Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies 1, 3 (2017), 1–20.

[6] Abdelkareem Bedri, Yuchen Liang, Sudershan Boovaraghavan, Geoff Kaufman,
and Mayank Goel. 2022. FitNibble: A Field Study to Evaluate the Utility and
Usability of Automatic Diet Monitoring in Food Journaling Using an Eyeglasses-
based Wearable. In Proceedings of the 27th International Conference on Intelligent
User Interfaces (<conf-loc>, <city>Helsinki</city>, <country>Finland</country>,
</conf-loc>) (IUI ’22). Association for Computing Machinery, New York, NY, USA,
79–92. https://doi.org/10.1145/3490099.3511154

[7] Abdelkareem Bedri, Apoorva Verlekar, Edison Thomaz, Valerie Avva, and Thad
Starner. 2015. Detecting Mastication: A Wearable Approach. In Proceedings of
the 2015 ACM on International Conference on Multimodal Interaction (Seattle,
Washington, USA) (ICMI ’15). Association for Computing Machinery, New York,
NY, USA, 247–250. https://doi.org/10.1145/2818346.2820767

[8] Abdelkareem Bedri, Apoorva Verlekar, Edison Thomaz, Valerie Avva, and Thad
Starner. 2015. A wearable system for detecting eating activities with proximity
sensors in the outer ear. In Proceedings of the 2015 ACM International Symposium
on Wearable Computers. 91–92.

[9] France Bellisle. 2020. Edograms: recording the microstructure of meal intake
in humans—a window on appetite mechanisms. International Journal of Obe-
sity 44, 12 (Dec. 2020), 2347–2357. https://doi.org/10.1038/s41366-020-00653-w
Publisher: Nature Publishing Group.

[10] Shengjie Bi, Tao Wang, Nicole Tobias, Josephine Nordrum, Shang Wang, George
Halvorsen, Sougata Sen, Ronald Peterson, Kofi Odame, Kelly Caine, Ryan Halter,
Jacob Sorber, and David Kotz. 2018. Auracle: Detecting Eating Episodes with an
Ear-mounted Sensor. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3,
Article 92 (sep 2018), 27 pages. https://doi.org/10.1145/3264902

[11] PE Chucri A. Kardous, MS and Ph.D. Peter B. Shaw. [n. d.]. CDC: So HowAccurate
Are These Smartphone Sound Measurement Apps? https://blogs.cdc.gov/niosh-
science-blog/2014/04/09/sound-apps/. [Online; accessed 29-Nov-2023].

[12] Keum San Chun, Sarnab Bhattacharya, and Edison Thomaz. 2018. Detecting
eating episodes by tracking jawbone movements with a non-contact wearable
sensor. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous
technologies 2, 1 (2018), 1–21.

[13] Keum San Chun, Sarnab Bhattacharya, and Edison Thomaz. 2018. Detecting
Eating Episodes by Tracking Jawbone Movements with a Non-Contact Wearable
Sensor. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 4 (mar
2018), 21 pages. https://doi.org/10.1145/3191736

[14] Jungman Chung, Jungmin Chung, Wonjun Oh, Yongkyu Yoo, Won Gu Lee, and
Hyunwoo Bang. 2017. A glasses-type wearable device for monitoring the patterns
of food intake and facial activity. Scientific reports 7, 1 (2017), 41690.

[15] Yujie Dong, Jenna Scisco, Mike Wilson, Eric Muth, and Adam Hoover. 2013.
Detecting periods of eating during free-living by tracking wrist motion. IEEE
journal of biomedical and health informatics 18, 4 (2013), 1253–1260.

[16] Christopher Fairburn and G. Wilson. 1993. Binge Eating: Nature, Assessment,
and Treatment. Journal of Nervous and Mental Disease - J NERV MENT DIS 183
(Jan. 1993).

[17] Xiaoran Fan, David Pearl, Richard Howard, Longfei Shangguan, and Trausti
Thormundsson. 2023. Apg: Audioplethysmography for cardiac monitoring in
hearables. In Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking. 1–15.

[18] Muhammad Farooq, Juan M Fontana, and Edward Sazonov. 2014. A novel ap-
proach for food intake detection using electroglottography. Physiological mea-
surement 35, 5 (2014), 739.

[19] Muhammad Farooq and Edward Sazonov. 2016. A novel wearable device for food
intake and physical activity recognition. Sensors 16, 7 (2016), 1067.

[20] Muhammad Farooq and Edward Sazonov. 2016. Segmentation and characteri-
zation of chewing bouts by monitoring temporalis muscle using smart glasses
with piezoelectric sensor. IEEE journal of biomedical and health informatics 21, 6
(2016), 1495–1503.

[21] Muhammad Farooq and Edward Sazonov. 2018. Accelerometer-based detection of
food intake in free-living individuals. IEEE sensors journal 18, 9 (2018), 3752–3758.

[22] Centre for Research on Eating Disorders at Oxford (CREDO). [n. d.]. Eating
Disorder Examination (Edition 17.0D). https://www.cbte.co/site/download/ede-
17-0d/?wpdmdl=615&masterkey=5c644ef9b6149. Accessed: 2024-05-26.

[23] Yang Gao, Ning Zhang, Honghao Wang, Xiang Ding, Xu Ye, Guanling Chen, and
Yu Cao. 2016. iHear food: eating detection using commodity bluetooth headsets.
In 2016 IEEE First International Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE). IEEE, 163–172.

[24] GoPro. 2020. HERO9 Black. https://gopro.com/en/us/shop/cameras/hero9-black/
CHDHX-901-master.html. [Online; accessed 22-May-2024].

[25] Takashi Hamatani, Moustafa Elhamshary, Akira Uchiyama, and Teruo Higashino.
2018. FluidMeter: Gauging the human daily fluid intake using smartwatches. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
2, 3 (2018), 1–25.

[26] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 448–456. http:
//jmlr.org/proceedings/papers/v37/ioffe15.pdf

[27] Yincheng Jin, Seokmin Choi, Yang Gao, Jiyang Li, Zhengxiong Li, and Zhan-
peng Jin. 2023. TransASL: A Smart Glass based Comprehensive ASL Recognizer
in Daily Life. In Proceedings of the 28th International Conference on Intelligent
User Interfaces (<conf-loc>, <city>Sydney</city>, <state>NSW</state>, <coun-
try>Australia</country>, </conf-loc>) (IUI ’23). Association for Computing Ma-
chinery, New York, NY, USA, 802–818. https://doi.org/10.1145/3581641.3584071

[28] Yincheng Jin, Yang Gao, Yanjun Zhu, Wei Wang, Jiyang Li, Seokmin Choi,
Zhangyu Li, Jagmohan Chauhan, Anind K. Dey, and Zhanpeng Jin. 2021. Soni-
cASL: An Acoustic-based Sign Language Gesture Recognizer Using Earphones.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 2, Article 67 (jun 2021),
30 pages. https://doi.org/10.1145/3463519

[29] Haik Kalantarian, Nabil Alshurafa, Tuan Le, and Majid Sarrafzadeh. 2015. Moni-
toring eating habits using a piezoelectric sensor-based necklace. Computers in
biology and medicine 58 (2015), 46–55.

[30] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[31] Nataliya Kosmyna, Caitlin Morris, Utkarsh Sarawgi, and Pattie Maes. 2019. At-
tentivU: A Biofeedback System for Real-time Monitoring and Improvement of
Engagement. In Extended Abstracts of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Comput-
ingMachinery, NewYork, NY, USA, 1–2. https://doi.org/10.1145/3290607.3311768

[32] Konstantinos Kyritsis, Christos Diou, and Anastasios Delopoulos. 2019. Detecting
meals in the wild using the inertial data of a typical smartwatch. In 2019 41st
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE, 4229–4232.

[33] Jonathan Lazar, JinjuanHeidi Feng, andHarryHochheiser. 2017. Researchmethods
in human-computer interaction. Morgan Kaufmann.

[34] Chi-Jung Lee, Ruidong Zhang, Devansh Agarwal, Tianhong Catherine Yu, Vipin
Gunda, Oliver Lopez, James Kim, Sicheng Yin, Boao Dong, Ke Li, Mose Sakashita,
Francois Guimbretiere, and Cheng Zhang. 2024. EchoWrist: Continuous Hand
Pose Tracking and Hand-Object Interaction Recognition Using Low-Power Active
Acoustic Sensing On a Wristband. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for
Computing Machinery, New York, NY, USA, Article 403, 21 pages. https://doi.
org/10.1145/3613904.3642910

[35] Ke Li, Ruidong Zhang, Boao Chen, Siyuan Chen, Sicheng Yin, Saif Mahmud,
Qikang Liang, Francois Guimbretiere, and Cheng Zhang. 2024. GazeTrak: Ex-
ploring Acoustic-based Eye Tracking on a Glass Frame. In Proceedings of the 30th
Annual International Conference on Mobile Computing and Networking (Washing-
ton D.C., DC, USA) (ACM MobiCom ’24). Association for Computing Machinery,
New York, NY, USA, 497–512. https://doi.org/10.1145/3636534.3649376

[36] Ke Li, Ruidong Zhang, Siyuan Chen, Boao Chen, Mose Sakashita, François Guim-
bretière, and Cheng Zhang. 2024. EyeEcho: Continuous and Low-power Facial
Expression Tracking on Glasses. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–24.

[37] Ke Li, Ruidong Zhang, Bo Liang, François Guimbretière, and Cheng Zhang.
2022. EarIO: A Low-Power Acoustic Sensing Earable for Continuously Tracking
Detailed Facial Movements. 6, 2, Article 62 (jul 2022), 24 pages. https://doi.org/
10.1145/3534621

[38] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[39] Saif Mahmud, Ke Li, Guilin Hu, Hao Chen, Richard Jin, Ruidong Zhang, François
Guimbretière, and Cheng Zhang. 2023. PoseSonic: 3D Upper Body Pose Es-
timation Through Egocentric Acoustic Sensing on Smartglasses. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 7, 3, Article 111 (sep 2023), 28 pages.

102

https://www.amazon.com/SanDisk-Extreme-32GB-UHS-I-SDSDXXG-032G-GN4IN/dp/B01J5RHBQ4
https://www.amazon.com/SanDisk-Extreme-32GB-UHS-I-SDSDXXG-032G-GN4IN/dp/B01J5RHBQ4
https://doi.org/10.1145/3313831.3376869
https://doi.org/10.1145/3313831.3376869
https://doi.org/10.1145/3490099.3511154
https://doi.org/10.1145/2818346.2820767
https://doi.org/10.1038/s41366-020-00653-w
https://doi.org/10.1145/3264902
https://blogs.cdc.gov/niosh-science-blog/2014/04/09/sound-apps/
https://blogs.cdc.gov/niosh-science-blog/2014/04/09/sound-apps/
https://doi.org/10.1145/3191736
https://www.cbte.co/site/download/ede-17-0d/?wpdmdl=615&masterkey=5c644ef9b6149
https://www.cbte.co/site/download/ede-17-0d/?wpdmdl=615&masterkey=5c644ef9b6149
https://gopro.com/en/us/shop/cameras/hero9-black/CHDHX-901-master.html
https://gopro.com/en/us/shop/cameras/hero9-black/CHDHX-901-master.html
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
https://doi.org/10.1145/3581641.3584071
https://doi.org/10.1145/3463519
https://doi.org/10.1145/3290607.3311768
https://doi.org/10.1145/3613904.3642910
https://doi.org/10.1145/3613904.3642910
https://doi.org/10.1145/3636534.3649376
https://doi.org/10.1145/3534621
https://doi.org/10.1145/3534621


ISWC ’24, October 5–9, 2024, Melbourne, VIC, Australia Saif Mahmud et al.

https://doi.org/10.1145/3610895
[40] Saif Mahmud, Vineet Parikh, Qikang Liang, Ke Li, Ruidong Zhang, Ashwin

Ajit, Vipin Gunda, Devansh Agarwal, François Guimbretière, and Cheng Zhang.
2024. ActSonic: Recognizing Everyday Activities from Inaudible Acoustic Waves
Around the Body. arXiv:2404.13924 [cs.HC]

[41] Saif Mahmud, M. T. H. Tonmoy, Kishor Kumar Bhaumik, A. M. Rahman, M. A.
Amin, M. Shoyaib, Muhammad Asif Hossain Khan, and A. Ali. 2020. Human
Activity Recognition from Wearable Sensor Data Using Self-Attention. In ECAI
2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September
2020, Santiago de Compostela, Spain.

[42] Mark Mirtchouk, Drew Lustig, Alexandra Smith, Ivan Ching, Min Zheng, and
Samantha Kleinberg. 2017. Recognizing Eating fromBody-Worn Sensors: Combin-
ing Free-living and LaboratoryData. Proc. ACM Interact. Mob.Wearable Ubiquitous
Technol. 1, 3, Article 85 (sep 2017), 20 pages. https://doi.org/10.1145/3131894

[43] Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, and Mayank Goel.
2022. SAMoSA: Sensing Activities with Motion and Subsampled Audio. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 3
(2022), 1–19.

[44] David Baeza Moyano, Daniel Arranz Paraiso, and Roberto Alonso González-
Lezcano. 2022. Possible effects on health of ultrasound exposure, risk factors
in the work environment and occupational safety review. In Healthcare, Vol. 10.
MDPI, 423.

[45] William J Murphy and John R Franks. 2002. Revisiting the NIOSH criteria for
a recommended standard: Occupational noise exposure. The Journal of the
Acoustical Society of America 111, 5 (2002), 2397.

[46] Tauhidur Rahman, Alexander T. Adams, Mi Zhang, Erin Cherry, Bobby Zhou,
Huaishu Peng, and Tanzeem Choudhury. 2014. BodyBeat: a mobile system for
sensing non-speech body sounds. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services (Bretton Woods, New
Hampshire, USA) (MobiSys ’14). Association for Computing Machinery, New
York, NY, USA, 2–13. https://doi.org/10.1145/2594368.2594386

[47] Tauhidur Rahman, Mary Czerwinski, Ran Gilad-Bachrach, and Paul Johns. 2016.
Predicting "About-to-Eat" Moments for Just-in-Time Eating Intervention. In Pro-
ceedings of the 6th International Conference on Digital Health Conference (Montréal,
Québec, Canada) (DH ’16). Association for Computing Machinery, New York, NY,
USA, 141–150. https://doi.org/10.1145/2896338.2896359

[48] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[49] S. Sasaki, A. Katagiri, T. Tsuji, T. Shimoda, and K. Amano. 2003. Self-reported
rate of eating correlates with body mass index in 18-y-old Japanese women.
International Journal of Obesity 27, 11 (Nov. 2003), 1405–1410. https://doi.org/10.
1038/sj.ijo.0802425 Publisher: Nature Publishing Group.

[50] Nordic Semiconductors. [n. d.]. nRF52840 Multiprotocol Bluetooth 5.4 SoC
supporting Bluetooth Low Energy, Bluetooth mesh, NFC, Thread and Zigbee.
https://www.nordicsemi.com/products/nrf52840. [Online; accessed 29-Nov-
2023].

[51] Sougata Sen, Vigneshwaran Subbaraju, Archan Misra, Rajesh Balan, and Youngki
Lee. 2018. Annapurna: building a real-world smartwatch-based automated food
journal. In 2018 IEEE 19th International Symposium on" AWorld of Wireless, Mobile
and Multimedia Networks"(WoWMoM). IEEE, 1–6.

[52] SGWireless. [n. d.]. SGW111X BLE Modules. https://www.sgwireless.com/
product/SGW111X. [Online; accessed 29-Nov-2023].

[53] Jaemin Shin, Seungjoo Lee, Taesik Gong, Hyungjun Yoon, Hyunchul Roh, Andrea
Bianchi, and Sung-Ju Lee. 2022. MyDJ: Sensing Food Intakes with an Attachable
on Your Eyeglass Frame. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 341, 17 pages. https:
//doi.org/10.1145/3491102.3502041

[54] Jaemin Shin, Seungjoo Lee, and Sung-Ju Lee. 2019. Accurate eating detection
on a daily wearable necklace. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services. 649–650.

[55] Arnold Slyper. 2021. Oral Processing, Satiation and Obesity: Overview and
Hypotheses. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 14
(July 2021), 3399–3415. https://doi.org/10.2147/DMSO.S314379

[56] Chikanobu Sonoda, Hideki Fukuda, Masayasu Kitamura, Hideaki Hayashida,
Yumiko Kawashita, Reiko Furugen, Zenya Koyama, and Toshiyuki Saito. 2018.
Associations among Obesity, Eating Speed, and Oral Health. Obesity Facts 11, 2
(April 2018), 165–175. https://doi.org/10.1159/000488533

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[58] Rujia Sun, Xiaohe Zhou, Benjamin Steeper, Ruidong Zhang, Sicheng Yin, Ke Li,
Shengzhang Wu, Sam Tilsen, Francois Guimbretiere, and Cheng Zhang. 2023.

EchoNose: Sensing Mouth, Breathing and Tongue Gestures inside Oral Cavity
using a Non-contact Nose Interface. In Proceedings of the 2023 ACM International
Symposium on Wearable Computers (Cancun, Quintana Roo, Mexico) (ISWC
’23). Association for Computing Machinery, New York, NY, USA, 22–26. https:
//doi.org/10.1145/3594738.3611358

[59] TDK. [n. d.]. ICS-43434 Multi-Mode Microphone with I2S Digital Output. https:
//invensense.tdk.com/products/ics-43434/. [Online; accessed 29-Nov-2023].

[60] Edison Thomaz, Irfan Essa, and Gregory D Abowd. 2015. A practical approach
for recognizing eating moments with wrist-mounted inertial sensing. In Proceed-
ings of the 2015 ACM international joint conference on pervasive and ubiquitous
computing. 1029–1040.

[61] Edison Thomaz, Cheng Zhang, Irfan Essa, and Gregory D. Abowd. 2015. Inferring
Meal Eating Activities in Real World Settings from Ambient Sounds: A Feasibility
Study. In Proceedings of the 20th International Conference on Intelligent User Inter-
faces (Atlanta, Georgia, USA) (IUI ’15). Association for Computing Machinery,
New York, NY, USA, 427–431. https://doi.org/10.1145/2678025.2701405

[62] Catherine Tong, ShyamA. Tailor, and Nicholas D. Lane. 2020. Are Accelerometers
for Activity Recognition a Dead-End?. In Proceedings of the 21st International
Workshop on Mobile Computing Systems and Applications (Austin, TX, USA)
(HotMobile ’20). Association for Computing Machinery, New York, NY, USA,
39–44. https://doi.org/10.1145/3376897.3377867

[63] M. Tanjid Hasan Tonmoy, Saif Mahmud, A. K. M. Mahbubur Rahman, M. Ashra-
ful Amin, and Amin Ahsan Ali. 2021. Hierarchical Self Attention Based Autoen-
coder for Open-Set Human Activity Recognition. In Advances in Knowledge Dis-
covery and Data Mining, Kamal Karlapalem, Hong Cheng, Naren Ramakrishnan,
R. K. Agrawal, P. Krishna Reddy, Jaideep Srivastava, and Tanmoy Chakraborty
(Eds.). Springer International Publishing, Cham, 351–363.

[64] B. TimothyWalsh, Harry R. Kissileff, Susan M. Cassidy, and Sondra Dantzic. 1989.
Eating Behavior of Women With Bulimia. Archives of General Psychiatry 46, 1
(Jan. 1989), 54–58. https://doi.org/10.1001/archpsyc.1989.01810010056008

[65] Tianben Wang, Daqing Zhang, Yuanqing Zheng, Tao Gu, Xingshe Zhou, and
Bernadette Dorizzi. 2018. C-FMCW Based Contactless Respiration Detection
Using Acoustic Signal. 1, 4, Article 170 (jan 2018), 20 pages. https://doi.org/10.
1145/3161188

[66] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical evaluation of
rectified activations in convolutional network. arXiv preprint arXiv:1505.00853
(2015).

[67] Koji Yatani and Khai N Truong. 2012. Bodyscope: a wearable acoustic sensor for
activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing. 341–350.

[68] Xu Ye, Guanling Chen, Yang Gao, Honghao Wang, and Yu Cao. 2016. Assisting
food journaling with automatic eating detection. In Proceedings of the 2016 CHI
conference extended abstracts on human factors in computing systems. 3255–3262.

[69] Tianhong Catherine Yu, Guilin Hu, Ruidong Zhang, Hyunchul Lim, Saif Mah-
mud, Chi-Jung Lee, Ke Li, Devansh Agarwal, Shuyang Nie, Jinseok Oh, et al.
2024. Ring-a-Pose: A Ring for Continuous Hand Pose Tracking. arXiv preprint
arXiv:2404.12980 (2024).

[70] Shu-qian Yuan, Ying-ming Liu, Wei Liang, Fei-fei Li, Yuan Zeng, Yin-yue Liu,
Shu-zhen Huang, Quan-yuan He, Binh Quach, Jiao Jiao, Julien S. Baker, and
Yi-de Yang. 2021. Association Between Eating Speed and Metabolic Syndrome:
A Systematic Review and Meta-Analysis. Frontiers in Nutrition 8 (Oct. 2021).
https://doi.org/10.3389/fnut.2021.700936 Publisher: Frontiers.

[71] Jiahao Zhang, Stephen Gould, and Itzik Ben-Shabat. 2020. Vidat—ANU CVML
Video Annotation Tool. https://github.com/anucvml/vidat.

[72] Rui Zhang and Oliver Amft. 2017. Monitoring chewing and eating in free-living
using smart eyeglasses. IEEE journal of biomedical and health informatics 22, 1
(2017), 23–32.

[73] Ruidong Zhang, Hao Chen, Devansh Agarwal, Richard Jin, Ke Li, François Guim-
bretière, and Cheng Zhang. 2023. HPSpeech: Silent Speech Interface for Com-
modity Headphones. In Proceedings of the 2023 ACM International Symposium on
Wearable Computers. 60–65.

[74] Ruidong Zhang, Ke Li, Yihong Hao, Yufan Wang, Zhengnan Lai, François Guim-
bretière, and Cheng Zhang. 2023. EchoSpeech: Continuous Silent Speech Recog-
nition on Minimally-Obtrusive Eyewear Powered by Acoustic Sensing. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems
(Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New
York, NY, USA, Article 852, 18 pages. https://doi.org/10.1145/3544548.3580801

[75] Ruidong Zhang, Jihai Zhang, Nitish Gade, Peng Cao, Seyun Kim, Junchi Yan, and
Cheng Zhang. 2022. EatingTrak: Detecting Fine-Grained Eating Moments in the
Wild Using a Wrist-Mounted IMU. Proc. ACM Hum.-Comput. Interact. 6, MHCI,
Article 214 (sep 2022), 22 pages. https://doi.org/10.1145/3546749

[76] Shibo Zhang, Yuqi Zhao, Dzung Tri Nguyen, Runsheng Xu, Sougata Sen, Josiah
Hester, and Nabil Alshurafa. 2020. NeckSense: A Multi-Sensor Necklace for
Detecting Eating Activities in Free-Living Conditions. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 4, 2, Article 72 (jun 2020), 26 pages. https://doi.org/
10.1145/3397313

103

https://doi.org/10.1145/3610895
https://arxiv.org/abs/2404.13924
https://doi.org/10.1145/3131894
https://doi.org/10.1145/2594368.2594386
https://doi.org/10.1145/2896338.2896359
https://doi.org/10.1038/sj.ijo.0802425
https://doi.org/10.1038/sj.ijo.0802425
https://www.nordicsemi.com/products/nrf52840
https://www.sgwireless.com/product/SGW111X
https://www.sgwireless.com/product/SGW111X
https://doi.org/10.1145/3491102.3502041
https://doi.org/10.1145/3491102.3502041
https://doi.org/10.2147/DMSO.S314379
https://doi.org/10.1159/000488533
https://doi.org/10.1145/3594738.3611358
https://doi.org/10.1145/3594738.3611358
https://invensense.tdk.com/products/ics-43434/
https://invensense.tdk.com/products/ics-43434/
https://doi.org/10.1145/2678025.2701405
https://doi.org/10.1145/3376897.3377867
https://doi.org/10.1001/archpsyc.1989.01810010056008
https://doi.org/10.1145/3161188
https://doi.org/10.1145/3161188
https://doi.org/10.3389/fnut.2021.700936
https://github.com/anucvml/vidat
https://doi.org/10.1145/3544548.3580801
https://doi.org/10.1145/3546749
https://doi.org/10.1145/3397313
https://doi.org/10.1145/3397313

	Abstract
	1 Introduction
	2 Related Work
	3 System Implementation
	3.1 Sensing Mechanism
	3.2 Hardware and Form Factor
	3.3 Deep Learning Framework

	4 User Study
	5 Performance Evaluation
	5.1 Evaluation of Frame-Level Inference
	5.2 Evaluation of Episode-Level Inference

	6 Discussion
	References



