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Figure 1: SeamPose repurposes seams as capacitive sensors in a shirt. Without modifcation to the clothing surface, the sensing 
shirt looks&wears similar to a conventional shirt and provides upper-body tracking capabilities. To make the sensing shirt, we 
machine-sew conductive threads over existing seams. Using 8 channels of capacitive seam signals (4 each on the left/right side) 
from the shirt, our customized deep-learning model estimates upper-body joint positions. 
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ABSTRACT 
Seams are areas of overlapping fabric formed by stitching two or 
more pieces of fabric together in the cut-and-sew apparel manufac-
turing process. In SeamPose, we repurposed seams as capacitive 
sensors in a shirt for continuous upper-body pose estimation. Com-
pared to previous all-textile motion-capturing garments that place 
the electrodes on the clothing surface, our solution leverages exist-
ing seams inside of a shirt by machine-sewing insulated conductive 
threads over the seams. The unique invisibilities and placements 
of the seams aford the sensing shirt to look and wear similarly 
as a conventional shirt while providing exciting pose-tracking ca-
pabilities. To validate this approach, we implemented a proof-of-
concept untethered shirt with 8 capacitive sensing seams. With a 
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12-participant user study, our customized deep-learning pipeline 
accurately estimates the relative (to the pelvis) upper-body 3D joint 
positions with a mean per joint position error (MPJPE) of 6.0 cm. 
SeamPose represents a step towards unobtrusive integration of 
smart clothing for everyday pose estimation. 
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1 INTRODUCTION 
From the second-to-last Ice Age when humans put on clothes for 
warmth and protection [28], clothes have become indispensable to 
everyday life. Not long after Mark Weiser envisioned the future 
of computers to be woven “into the fabric of everyday life” [56], 
researchers explored smart clothing for wearable computing [19, 
44, 44]. The always-on nature of clothing makes it an excellent 
medium for everyday pose tracking, a fundamental task with obvi-
ous applications in health care [40], human activity recognition [34], 
AR/VR interactions [1], human-robot interactions [26], sports ana-
lytics [27], etc. 

Clothing deforms, stretches, and shifts as the joints and mus-
cles move. Prior all-textile wearable movement sensing solutions 
have exhibited exciting performance by attaching conductive fabric 
patches across the clothing surface. More than 10 fabric patches 
covering diferent body parts were demonstrated to classify 10 
upper-body movements [14] and to track continuous upper-body 
pose [63]. However, such modifcations with patches of conductive 
fabric alter the base fabric’s properties: visual aesthetics and mate-
riality (e.g., softness, stretchability, thickness, and breathability). As 
a result, the wearer’s experience changes, and the clothing designer 
needs to be aware of electrode placements’ impact on tracking 
performance [63]. 

To minimize surface modifcation and optimize the wearing 
experience while providing fne-grained tracking capabilities, we 
present SeamPose, which repurposes existing seams in a shirt as 
capacitive sensors for upper-body pose tracking. Seams are areas 
of overlapping fabric formed by joining two or more pieces of fab-
ric together with stitches. Seam stitching is an essential step in 
the prevalent and scaled cut-and-sew manufacturing process that 
produces most everyday apparel. Seam placements are determined 
by the pattern, a set of templates designed for cutting and sewing 
the fabric into garment [47]. Because seams originally exist on the 
garment and remain concealed when worn, altering seams with con-
ductive threads will not change the appearance or the materiality 
of the apparel, while providing exciting tracking capabilities. 

While researchers have extensively explored with conductive 
or functional stitches [4, 13, 18, 21, 42, 61], as we discussed, large 
areas of conductive patches are needed for the complex body pose 
estimation task in the past. This paper aims to answer the research 
question: whether capacitive sensing seams, repurposed from 
existing seams, on a shirt can estimate upper-body pose. 

To answer this research question, we developed a proof-of-concept 
prototype based on a common and basic long-sleeve shirt. To trans-
form the seams into capacitive sensors, we machine-sew insulated 
conductive threads over the existing seams. It is important to note 
that we only augment existing seams from the selected shirt pat-
tern and do not strategically add electrodes to locations that better 
capture body movements [7, 15, 32, 47]. This prototype is unteth-
ered and battery-powered, as shown in Fig. 4. There are 8 seam 
electrodes (Fig. 5), 4 each on the left and right side of the shirt. 
These eight seam electrodes are connected to a customized active 
capacitive sensing board that measures and transmits the signals 
wirelessly via Bluetooth. The sensing principle of our approach is 
that diferent body poses and movements will deform seam electrodes 
and change the coupling between the human body and seam electrodes, 
leading to unique and complex patterns in measured capacitances. 

To extract and interpret the pose information from these com-
plex capacitance readings, we customized a deep-learning pipeline 
that estimates 8 relative (to the pelvis) upper-body joint positions 
in 3D. To evaluate SeamPose, we conducted a user study with 12 
participants. The results showed that SeamPose tracks upper body 
poses with a mean per joint position error (MPJPE) of 6.0 cm, com-
parable with prior wearable pose tracking systems. In summary, 
the main contributions of this paper are: 

• We described a fabrication process to repurpose existing 
seams in a long-sleeve shirt into capacitive sensors for body 
pose tracking, one step towards minimally obtrusive conduc-
tive textile sensing. 

• We developed a proof-of-concept untethered long-sleeve 
shirt prototype and a deep learning framework that estimates 
upper body joint 3D positions from the capacitance measured 
by these conductive seams. 

• We conducted a user study with 12 participants and achieved 
promising results, as a proof-of-concept to verify the feasi-
bility of this proposed approach. 

• We further discussed the opportunities and challenges of 
generalizing SeamPose on various clothing types and wide-
spread adoption in everyday life. 

2 RELATED WORK 
SeamPose tackles pose tracking with capacitive sensing seams in a 
long-sleeve shirt. Capacitive sensing with textiles exhibited exciting 
potentials in strain sensing [6], environmental sensing [2], object 
recogniton [57], gesture recognition [4, 24, 45], etc. Discussing the 
fundamentals of capacitive sensing is beyond the scope of this 
paper, we refer readers to Grosse-Puppendahl et al. and Bian et 
al. for comprehensive reviews of body-area capacitive in HCI [8, 20]. 
In this section, we will focus on discussing the prior work that is 
closely related to wearable pose-tracking including 1) wearable pose 
estimation, and 2) body movement sensing with smart clothing. 

2.1 Pose Estimation with Wearable Sensors 
Compared to high-fdelity vision-based MoCap systems [16, 43, 53], 
wearable solutions enable on-the-go pose estimation without the 
need for setups in the enviroments. Xsens [41] attaches 17 wireless 
inertial measurement units (IMUs) onto a tight-ftting suit to enable 
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professional-grade full-body captures. Decreasing the number of in-
strumentation sites alleviates the cumbersome setup but drastically 
complicates the tracking task due to limited sensed information. 
Researchers explored full-body tracking with six IMUs [22, 58], 
six electromagnetic sensors [25], or four fex sensors [11] attached 
onto tight ftting suits. However, tight-ftting suits are not comfort-
able for everyday uses. In AR/VR uses [38], full-body poses can 
be inverse-kinematically inferred with sensors in the headset and 
hand controllers [3, 5, 23]. IMUPoser uses IMUs in consumer smart-
phones, smartwatches, and earphones to infer full-body pose [39]. 
A single camera could track body pose when mounted on the 
head [52, 54]/wrist [33] from egocentric/partial body views, re-
spectively. Recently, smartglasses have utilized ultrasonic sensing 
to track upper-body poses [37]. SeamPose shares the approach of 
pose reconstruction with limited sensed information for minimally 
obtrusive integration and contributes a new approach with seam 
sensors in clothing that aford everyday uses. 

2.2 Body Movement Sensing with Smart 
Clothing 

Clothing covers a large area of human bodies and the always-on na-
ture of clothing afords always-on body movement sensing. Attach-
ing distributed miniaturized electronics (e.g., IMUs [22] and fex sen-
sors [11]) to the garments hinders the softness and requires either 
wireless sensor network [41] or optimized on-body wirings [55]. 

In contrast, all-textile systems, commonly employing conductive 
fabrics/threads, augment garments with motion-sensing capabil-
ities while preserving the all-textile softness. Liang et al. bonded 
conductive fabric patches onto tight-ftting leotards to coarsely 
monitor dance movements with resistive changes [32]. Esfahani et 
al. sewed 11 polymerized resistive patches on an undershirt to clas-
sify 10 upper body movements [14]. Most resistive strain-based 
approaches require tight-ftting garments, similar to that of IMU 
suits, because the sensors must be frmly attached to the expected 
body locations [65]. Gioberto et al. used resistive coverstitch on 
loose-ftting garments to detect fabric bends and folds [15]. Mo-
Capaci integrated 4 textile cables as capacitive antennas into a 
blazer and efectively classifed 20 upper-body poses [7]. In contrast 
to works above that analyze the correlation between signals and 
movements or perform classifcation tasks, SeamPose aims to infer 
upper-body joints in 3D. 

The most recent work, Mocapose [63], is the only existing loose-
ftting all-textile system that accomplished the upper-body 3D joint 
reconstruction task. With capacitive signals from 16 channels (8 
each on the left/right) of conductive fabric patches glued onto a 
jacket, a 2D CNN-based deep learning model demonstrated strong 
performance in tracking upper body pose. In contrast, our proposed 
approach alters the garment at the thread-level instead of the at 
the fabric-level, a step towards minimizing the alteration of the 
garment visually and tactilely. By only sewing over the 8 existing 
seams with conductive threads, SeamPose can track the upper body 
pose continuously on a loose-ft long-sleeve shirt in real-time. 

Figure 2: The seams and patterns of our proof-of-concept 
prototype with a long-sleeve T-shirt. The black fabric pieces 
represent the patterns of the T-shirt, while the dotted lines 
are the repurposed seams, also indicating where the stitches 
are when joining the fabric pieces. The color of the dotted 
lines can be mapped to the lines, or seams, on the constructed 
T-shirt. 

3 SEAMS & PATTERNS 
For garments, patterns serve as templates representing the shapes 
and sizes of the fabric pieces required to construct a specifc gar-
ment. Seams, on the other hand, are the areas where the fabric 
pieces overlap when sewn together to make the garment (Fig. 2). 
Consequently, patterns defne the number of seams, seam place-
ments, and the shapes of fabric to be seamed. Patterns afect the 
garments’s structure, size, ft, etc. Although seams vary in their 
placements, quantity, and length, they are generally distributed 
throughout the garment. This distribution provides opportunities 
to collect rich information regarding the body. As a result, in this pa-
per, we leverage this feature and repurpose the seams as capacitive 
sensors to track body poses. 

Because we are repurposing existing seams as sensors, patterns 
further decide the sensors’: 

• Placements: jackets, blazers, and collard shirts commonly 
have seams in the front and back of the torso for ft, but 
T-shirts, sweaters, and sweatshirts generally do not; 

• Quantity: jackets could easily have twice as many seams as 
T-shirts, and even for a long-sleeve T-shirt, some patterns 
have 8 seams1 while others2 have 10 seams (2 additional 
ones on the sides of the torso). 

• Lengths: the sleeve seam in a long-sleeve shirt covers the 
elbow, an important joint to track, while a short-sleeve shirt 
does not. 

For the proof-of-concept prototype, we chose a long-sleeve T-
shirt3. Long-sleeve T-shirts are basic and common. They have the 
fewest numbers of seams among cut-and-sew long-sleeve tops. Our 
selected shirt has 5 seams on each side (Fig. 2): 1 above the shoulder, 
about 11cm long, 1 in front of the shoulder, about 30cm long, 1 
behind the shoulder, about 30cm long, 1 along the sleeve, about 
49cm long, and one on the side of the torso, about 44cm long. To 
ensure minimal alteration and maximal generalizability, we chose 
not to repurpose the ones on the sides of the torso because not all 
long-sleeve shirt patterns have those seams, as explained above. 
1https://a.co/d/6mg3bW8 
2https://www.uniqlo.com/us/en/products/E460354-000 
3https://www.michaels.com/product/long-sleeve-crew-neck-adult-t-shirt-by-make-
market-M20033775 

https://3https://www.michaels.com/product/long-sleeve-crew-neck-adult-t-shirt-by-make
https://2https://www.uniqlo.com/us/en/products/E460354-000
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Although our trained models do not aim to generalize across 
diferent patterns, adding more seam electrodes will provide ad-
ditional information that likely will further improve the tracking 
performance. The purpose of this paper is to demonstrate the feasi-
bility of this approach and present a baseline for future exploration. 
In addition, we acknowledge that the results presented in our paper 
can not be directly replicated on sleeveless garments like strapped 
and strapless tops. 

4 SEAMPOSE IMPLEMENTATION 
We repurpose seams as capacitive sensors for upper-body pose 
tracking, without modifying the clothing surface. SeamPose proto-
type has three main components: 

• A shirt with 8 conductive seam electrodes (detailed in Sec. 4.1): 
the electrodes are symmetric on the left/right side of the shirt 
with 1 above the shoulder, 1 in front of the shoulder, 1 behind 
the shoulder, and 1 along the sleeve; 

• A customized capacitive sensing board, detailed in Sec. 4.2; 
and 

• A deep learning pipeline estimating the positions of 8 upper 
body joints from the readings of capacitive sensors (Sec. 4.3), 
detailed in Sec. 4.4. 

4.1 Conductive Seams Fabrication 
To transform conventional seams into capacitive sensing seams, we 
machine-sew conductive thread over existing seams, as shown in 
Fig. 3. The base fabric of our selected unisex shirt (Make Market 
Long Sleeve Crew Neck Adult T-Shirt) of size medium is 100% single 
knit cotton jersey. We use a home sewing machine (SINGER Heavy 
Duty 4423 Sewing Machine) with a sewing needle of size 80/12 
(SCHMETZ Universal 130/705). The top thread uses a conventional 
polyester sewing thread. Similar to prior works that use functional 
threads/wires as bobbin threads to relieve mechanical stress [4, 42, 
61], the bottom bobbin thread uses an of-the-shelf TPU-coated 
2-ply silver-plated nylon thread (Shieldex 117/17 x2 HCB TPU, 
Fig. 3(B)) with a resistance profle of < 300Ω/m. We choose a zigzag 
stitch, common for seaming with home sewing machines. After 
extensive experiments for a clean and consistent fnish, we set the 
thread tension, stitch length, and stitch width to 5, 2.5, and 2.5, 
respectively. 

Conductive Thread Selection. The choice of conductive thread can 
heavily impact the overall system performance. In our early pro-
totypes, we experimented with a non-insulated silver-plied nylon 
thread (LessEMF, <100 Ohm/cm). We noticed (a) electrode shorting 
caused by body movements so we looked into insulated conductive 
threads that are compatible with home sewing machines, and (b) 
frequent conductive thread breakage when sewing. For our selected 
TPU-coated thread, the elastic TPU coating (a) insulates the conduc-
tive core, and (b) provides strong mechanical properties allowing 
21% ± 5 elongation before breaking4. When prototyping with the 
TPU-coated thread, the conductive thread never broke when sewing. 
The strong mechanical property not only increases the fabrication 

4https://www.shieldex.de/wp-content/uploads/2021/05/Y-VTT-Datasheet-Shieldex-
117-17-x2-HCB-TPU-V4.pdf 

Figure 3: Machine Sewing Conductive Thread. (A) Home 
sewing sewing machine setup. (B) The of-the-shelf insulated 
conductive thread in use. (C) An illustration of machine-sewn 
conductive thread traces over existing seams, overlapping 
areas formed when stitching (by the original seam stitches) 
pieces of fabric together. (D) A side-view illustration of how 
the TPU-insulated conductive thread with silver nylon core 
is stitched onto the fabric. 

Figure 4: The battery-powered customized sensing board is 
housed inside a 3D-printed PLA case and hot-glued onto the 
prototype below the neck. 

success rate but also strengthens the prototype’s durability, impor-
tant for wearable applications with frequent rewearing. Our fnal 
prototype has been tested with over 20 people and hundreds of 
remounting without breaking. 

Connectors. Electrically and mechanically robust connections 
between textile-based sensors and rigid electronics remain an open 
research problem [51]. We connect our insulated threads similar to 
insulated wires with DuPont wire-to-wire connectors. We crimp 
the stripped conductive thread core inside the conductor tab and the 
insulating TPU-coated thread inside the insulation tab. This method 
ensures stable connections during movements and re-wearings. 
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Figure 5: Example SeamPose Signals. We show 19 seconds of continuous SeamPose the left and right seam signals (4 each) as the 
wearer performs symmetric (both arm raises) arm movements, asymmetric arm movements (right arm curls, left front raises, 
alternate punches, confused gesture), head movements, and standing still. The colors map the signals and their corresponding 
electrode placements, illustrated on the left. The numerical value of signal on �-axis is median normalized. 

4.2 Customized Sensing Board 
The purpose of the customized sensing board (Fig. 4, 36x31mm) is 
to measure and transmit the capacitance of the connected conduc-
tive seams without hindering body movements. We replicate the 
single-ended confguration circuit in FDC2214 (Texas Instruments) 
evaluation module5: the 4-channel capacitance-to-digital converter 
measures capacitances with great resistance to electromagnetic 
interference. We chain 2 FDC2214s on I2C to read 8 channels, at a 
confgured sample rate of 32Hz. XIAO nRF52840’s (Seeed Studio) 
transmits the sensor readings via onboard Bluetooth Low Energy 
(BLE) functions to a nearby computer. We use Arduino to program 
the frmware and UART for Bluetooth communication. We power 
the circuit with a 3.7V 290mAh Lipo battery. The mean measured6 

power consumption is 12.7mA, which can continuously transmit 
measurements for 22.83h. Approximately, the board weighs 11g 
and costs US$27. 

4.3 SeamPose Signals 
Changes in the wearer’s upper body pose cause changes in the seam 
electrode’s sensed capacitances, which are input into our deep learn-
ing pipeline that infers the relationship between the body pose and 
measurement capacitances. When connected to the sensing board, 
the conductive seams become self-capacitance sensor electrodes. In 
a loading-mode capacitive sensing system, the setup is simple: each 
sensor electrode acts as both a transmitter and a receiver [50]. In 
any loading-mode system, electrical current displacement occurs as 
the electrode’s capacitive coupling with the surrounding changes. 
In SeamPose, the seam electrodes are coupled with the wearer’s 
body, so when the body pose changes (i.e., limb movements), the 
seams move along with the limbs, leading to changes in the cou-
pling between the body and seam electrodes, hence the current 

5https://www.ti.com/tool/FDC2214EVM 
6https://lowpowerlab.com/guide/currentranger/ 

displacement changes. In addition, the seam electrode itself de-
forms, distorts, and displaces during body movements, altering the 
electrode’s capacitance which also afects the current displacement. 
In a nutshell, we conjecture the capacitive changes are attributed to 
(1) coupling changes between the seam electrodes and the wearer’s 
body, and (2) seam electrode’s self-capacitance changes. 

Notice that in Fig. 5, the sleeve electrodes (purple) not only 
trace along the sleeve seams but also trace along the seams in the 
front (beige) of and on top of the shoulder (blue). This is a design 
choice to avoid additional wire routings across the shirt: one ends 
of all electrodes meet at the sensing board. Even though some 
sensor placements "overlap", they still individually provide sensing 
information, which we further validate in Sec. 6.5. 

As shown in Fig. 5, the seam signals correlate to the wearer’s 
movements. The sleeve electrodes, colored purple, have the largest 
changes in magnitude as they are the longest electrodes with the 
largest range of motion. The shoulder front (colored beige) and 
back (colored green) electrodes have similar magnitudes as they 
are symmetrically placed, but the relationship between these two 
signals depends on the motion. For example, for the both-arm side 
raises, the two signals both increase as the arms raise and decrease 
as the arms return, but for alternate punching movements, one 
signal increases as the other decreases. The shoulder top (colored 
blue) has the smallest magnitude for its shortest length and rela-
tively stationary nature, compared with other electrodes that touch 
moving joints. Though the magnitude is small, it is proven to still 
be information-rich in our later evaluation. 

For asymmetric movements (e.g., right arms curls and left front 
raises), the static side still exhibits signal changes with small mag-
nitudes. Moving one side of the shirt often stretches the other side 
because diferent parts of the shirt are interconnected and body 
movements involve complex muscle engagements. For example, a 
one-arm raise could (a) stretch the back of the shirt which changes 
the signals as the sensing board is in the back, and (b) alter the whole 

https://6https://lowpowerlab.com/guide/currentranger
https://5https://www.ti.com/tool/FDC2214EVM
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Figure 6: Customized Deep Learning Pipeline. 

body’s coupling with the shirt. Further, at the thread-to-sensing-
board connection, some insulated threads are close to and even 
overlap with each other and thus attributed to crosstalks, which is 
a limitation to be addressed in the future, but in our prototype, we 
input the 8 seam signals together, instead of side-by-side, to avoid 
possible confusion to the DL model. 

Although our prototype does not cover or directly instrument 
the head, it can sense the head movement (see head roll signals 
difering from standing still signals in Fig. 5) based on overall body-
capacitance changes and subtle shoulder movements. To extract 
and interpret the pose information from these complex capacitance 
changes, we developed a data-driven approach. 

4.4 Deep Learning Pipeline
With eight channels of capacitive signals from the seams on the 
shirt, we estimate the wearer’s upper body pose in 3D, relative to 
the pelvis. In the previous subsection, we show the correlation be-
tween body movements and seam signals, but the complex mapping 
between the 8 channels and the body pose is not immediately clear. 
The reconstruction task is challenging because the tracked body 
parts have a total of 19 degrees of freedom [9], and we only have 
sparsed 8 channels of 1-dimensional temporal signals, constrained 
by our design choice that minimally alters everyday clothing. Un-
like tight-ftting suits, the sensors are not frmly fxed to a mapped 
body part, complicating the problem [65]. The task is further com-
plicated by the soft cotton fabric having natural draping variations. 
For example, when the wearers raise their arms over the head, the 
sleeves naturally slide down the arms and attribute signal varia-
tions. Embracing these technical hurdles in pursuit of comfortable 
and seamless pose-tracking integration into everyday clothing, we 
customized a deep-learning pipeline to learn the complex mapping 
between the 8 input channels. 

4.4.1 Ground Truth Acquisition. Recent computer vision advance-
ments in pose reconstruction with a single RGB image have proven 
more accurate for users in loose-ftting cloth [46]. Similar to prior 
works on non-vision-based pose tracking [10, 29–31, 60, 63], we se-
lected state-of-the-art computer vision models for ground truth ac-
quisition. Given an RGB image frame, Detectron27 frst detects the 
area containing the person, then HMR2.0 [16], a vision transformer-
based model, estimates the SMPL [35] representation of the detected 

7https://github.com/facebookresearch/detectron2 

person. SMPL is a mathematical model that describes a human 
body mesh template of 6890 vertices with shape components � 
(dim(�)=10) and pose components � (dim(� )= 216 = 24 joints x (3 
x 3) rotation matrix representing the rotation from its kinematic 
prior). Among the 24 joint components, the pelvis provides global 
orientation (i.e., the direction the body is facing) and the other 23 
joint components represent rotations from their kinematic prior. 
SMPL also acts as a forward-kinematic model and calculates joint 
positions, � , based on joint rotations, � . Note, SeamPose does not 
predict body shape or global orientation. The ground truth labels 
have 2 folds: 

• 13 pose components of size [13 x 6]: rotations of 13 upper 
body joints, and we exclude the hands, similar to [5, 23]. 
SMPL uses 3 x 3 rotation matrices to represent rotations, but 
a 6D rotation representation has been proven efective [23, 
39, 64], so we convert rotation matrices into 6D rotation 
vectors. 

• 8 joint positions of size [8 x 3]: 3D position representation of 
upper-body joints, in x,y,z coordinates, calculated by SMPL 
with pose components: nose, neck, right shoulder, right el-
bow, right wrist, left shoulder, left elbow, and left wrist. We 
scale the joint positions into physical units (meters) with 
measured arm lengths and center the pelvis at the origin. 

4.4.2 Input Normalization. The input to the model is a 3s-window 
(96 frames) of 8 channels of seam signals. The capacitive readings 
depend on the body pose and the capacitance of the seam electrodes. 
Because the electrodes are not of equal length and are distributed 
on diferent parts of clothing, channels of signals are not centered 
together. We frst calculate the median of the most recent window of 
5.6s (180 frames) and perform a median normalization. And to better 
center individual channels around 0, we subtract each channel with: 
0.98 x channel median within the 3s-window. The scaling factor 
aims to preserve inter-channel relationships. For example, without 
the scaling factor, standing still for more than 5.6s with arms down 
and arms up will have the same normalized signals. 

4.4.3 Model. The model architecture is detailed in Fig. 6. The input 
signals, of dimension [96x8], are frst transformed into an embed-
ding of dimension 96 with a linear layer. Then, the embeddings go 
through a 2-layer bidirectional LSTM (inspired by [11, 22, 39, 66]) 

https://7https://github.com/facebookresearch/detectron2
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of hidden dimension 256. LSTM is chosen to better model the tem-
poral patterns, but there are potential optimizations on model ar-
chitectures (e.g., transformers) for future works. We take the last 3 
prediction frames (0.09s) and decode the embeddings with 2 linear 
layers with out-feature sizes of 256 and 78 (for the 13 pose compo-
nents). We then MedianPool the last 3 prediction frames to mitigate 
jitter [11]. Finally, we use SMPL to calculate joint positions based 
on the pose components. Our model directly regresses the pose 
components representing joint angles that are more transferrable 
across body sizes. The conversion to joint positions allows easy 
comparisons with other systems as the position error is the com-
mon metric for wearable pose tracking. We further smooth the joint 
position predictions with a running median flter of window size 5 
(0.17s). 

4.4.4 Training. We implemented the models in PyTorch and trained 
them on an NVIDIA GeForce RTX 2080 Ti. We use the Adam Opti-
mizer with a cosine learning rate scheduler. To compute the loss, 
we add the mean absolute error (MAE) losses of pose components 
and joint positions: 

L = | |� − � ∗ | |1 + | |� − � ∗ | |1 (1) 

Here, � and � are the predicted 13 pose components and 8 joint 
positions. � ∗ and � ∗ are the ground truth 13 pose components and 
8 joint positions. The batch sizes are 512. 

We adopt a two-stage training scheme: (1) User-Independent 
training stage: we frst train a user-independent model with 15 
epochs and a starting learning rate of 8e−3; and (2) User-Adaptive 
training stage: we then fnetune the trained user-independent model 
with another 10 epochs and a starting learning rate of 4e−4. 

4.4.5 Data Augmentation. To improve the model’s robustness against 
diferent body sizes and movement patterns, we apply data augmen-
tation techniques to introduce variations to the training data in each 
epoch. To mitigate window and channel median variations that 
impact the input normalization, at 80% chance, we apply random 
shifts to window and channel medians independently. To account 
for signal range variations caused by the ft of the shirt, at 80% 
chance, we apply random scaling in the range of [94%, 106%] to the 
normalized input. To further introduce randomness, at 80% chance, 
we scale individual reading in the range of [99.7%, 100.3%]. 

4.5 Real-Time Inference Pipeline 
We implement a real-time end-to-end inference pipeline (Fig 7). 
For real-time joint visualization, we use the visualizer provided by 
EasyMocap [49]. On an Apple Macbook Air (2022), the inference 
(10.7ms) and visualization (16.0ms) latency are 28ms in total. 

5 USER STUDY EVALUATION 
To evaluate SeamPose’s continuous upper-body pose estimation per-
formance, we conducted a user study, approved by the Institutional 
Review Board (IRB). We recruited 12 participants (6 self-identifed 
as male, 6 as female, mean age=24.9, std age=4.0) spanning a variety 
of body shapes, detailed in Table 2. Each study lasted about 1 hour 
and compensated US$15. 

We conducted the study in an experiment room on a university 
campus. At the beginning of the study, the experimenter instructed 

Figure 7: Real-Time Inference with SeamPose. Note, for our 
MPJPE calculation, the head is represented by only the nose 
key point to avoid error dilution, but for visualization pur-
poses, we include eyes and ears key points reconstructed by 
SMPL. 

the participant to stand in front of a green screen. A laptop (Apple 
Macbook Air, 2022) was placed on a desk about 3m away from 
the participant. The laptop continuously recorded (a) ground truth 
video via its built-in camera (30fps) and (b) SeamPose sensing data 
received via Bluetooth from the prototype described in Sec. 4 and 
synchronized the two with its clock. The laptop and its connected 
monitor displayed visual stimulus for movements and the camera 
view that captures the full body. We chose video stimuli over photos 
and text as videos contain details of the movements. Participants 
were asked to follow the movements on the video but were not 
strictly asked to follow the same pace nor the exact movement 
patterns (e.g., golf&tennis swings and dance movements varied 
greatly among participants). 

For each participant, we collected 8 sessions of data. Before each 
session, the participant was instructed to take of and put back on 
the shirt themself in order to evaluate our system across diferent 
wearing sessions. Participants wore their own clothes of various 
types and sizes that ft underneath our prototype shirt. Each session 
lasted about 227 seconds. Each session contains 3 sections, including 
three types of upper-body movements informed by prior work: 

• Section 1: 54 randomized unique movement videos 
(195s), detailed in Appendix A, cover casual/daily gestures [7], 
sports movements [5, 11], and controlled terminal poses [37] 
movement sequences [63] which explore poses that are un-
common in daily activities but kinematically feasible. 

• Section 2: 2 TikTok dance videos8,9 (21s) introduce fuent 
movements and rare poses [63]. 

• Section 3: Freestyle movements (10s) introduce unseen 
poses/movements that are not included in our defned set. 
Participants are instructed to perform random movements 
of their choice, not limited to the upper body. 

As a proof-of-concept on a research prototype, we can not exhaust 
all possible upper-body poses. The three diferent types of move-
ments are chosen to provide enough variance of the body poses 

8https://www.tiktok.com/@sophielaverie/video/7334053266050911521 
9https://www.tiktok.com/@sophielaverie/video/7326633661162474784 

mailto:9https://www.tiktok.com/@sophielaverie/video/7326633661162474784
mailto:8https://www.tiktok.com/@sophielaverie/video/7334053266050911521
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Figure 8: Joint Error Breakdown. In (A), we show the distance error distributions of the 8 predicted joints, labeled in (B). Error 
bars represent the standard deviation across participants. 

to demonstrate the potential of this proposed sensing approach to 
tracking body poses. 

In total, we collected 1813.6 seconds of data from each partici-
pant, resulting in 1813.6s × 30fps (camera’s sampling rate) = 54408 
training/testing instances. From all 12 participants combined, we 
collected 6.03 hours of data. 

At the end of the study, participants completed a questionnaire 
collecting information about their demographic, body sizes (mea-
sured by the experimenter), and the prototype’s wearability. 

6 RESULTS 
We evaluated SeamPose for both user-adaptive and -independent 
scenarios, as well as estimating performance for each body joint 
and various motions. Additionally, we conducted an ablation study 
to understand the impact of seam placements on SeamPose’s con-
tinuous tracking performance. 

Evaluation Metrics. Informed by other wearable pose tracking 
systems [5, 33, 37, 63], we adopt Mean Per Joint Position Error 
(MPJPE) as the evaluation metric for continuous pose tracking: the 
mean Euclidean distance errors of 8 joint positions in centimeters 
(cm), relative to the pelvis. 

6.1 User-Adaptive Model Results 
As mentioned in Sec. 4.4.4, we frst trained a user-independent 
model, without the participant’s data in the training set, and then 
we fne-tuned the user-adaptive (UA) model with the the evaluated 
participant’s data. To simulate the user calibrating the device before 
they start using it, we use the frst 6 sessions (22.7 min) of data from 
the evaluated participant for fne-tuning and testing on the last 2 
sessions. Note that the participant took of and put back on the shirt 
before every session, our system is session-independent. SeamPose 
achieves an overall MPJPE of 6.0cm (std=0.65cm). We recognize that 
providing 22.7 min of calibration data may not be always preferred 
for the optimal user experience. Therefore, we conducted further 
experiments exploring how much fne-tuning data is required to 
achieve a good tracking performance. As shown in Fig. 9, reduc-
ing the fne-tuning data to 18.9min, 15.1min, 11.3min, 7.6min, and 
3.8min, MPJPE increases to 6.1cm, 6.2cm, 6.4cm, 6.6cm, and 7.0cm, 

Figure 9: As the user provides more training data for the 
user-adaptive model, the model’s tracking performance in-
creases. Error bars represent the standard deviation across 
participants. 

respectively. With only 3.8 minutes of user-specifc training data 
that contains only 1 repetition of each movement, SeamPose still 
has a promising tracking performance of 7.0cm (std=0.68cm), 1cm 
worse than that with 22.7min of training data. 

6.2 Unseen User: User-Independent Model 
Results 

For an even better user experience, the shirt should be able to 
track body poses "out-of-box" without any calibration data from 
the new user, i.e., user-specifc training data. We adopt a leave-one-
participant (LOPO) cross-validation to evaluate our performance in 
this scenario. User-independent (UI) models were trained 7.75 hours 
of data: 30.2 minutes of data from each of the other 11 participants 
and 5 hours of data from 7 researchers. As shown in Fig. 9, the 
MPJPE increases to 8.6cm (std=0.93cm), 1.6cm worse than 3.8min 
of training data, and 2.6cm worse than 22.7min of training data. 
The performance degradation is expected because individuals’ body 
sizes and capacitances vary, but SeamPose still yields low-fdelity 
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Figure 10: Movement Error Breakdown. Error bars represent 
the standard deviation across participants. 

tracking, sufcient for certain applications like activity recognition 
and lifelogging. 

6.3 Results Analysis based on Joints 
To help better understand our performance, we further analyzed 
our performance based on individual joints, as illustrated in Fig. 8. 
Similar to prior work [5, 39, 63], the wrists with the most moving 
distance have the largest errors: 12.2cm, 14.4cm, and 16.4cm with 
22.7min, 3.8min, and 0min of user data respectively. The end efec-
tors accumulate errors along their long kinematic chains and the 
wrists have large ranges of movements. The elbows have the sec-
ond largest errors: 6.7cm, 7.8cm, and 9.1 cm with 22.7min, 3.8min, 
and 0min of user data. The neck and shoulders have the smallest 
errors, as they did not have much movement compared to wrists 
and elbows. We notice a big diference in estimating the position of 
the head between the UI model (6.4cm) and UA model (3.8cm) with 
3.78min of data. We conjecture this is caused by the fact that Seam-
Pose does not directly instrument the head, unlike other tracked 
joints that afect the seam electrode shapes, so head movements are 
mostly inferred from the overall coupling change between the body 
and the seams. This indicated that our system may need calibration 
data for a reliable estimate of head position. 

6.4 Results Analysis based on Motion 
We further break down the results into motion types. Like many 
other data-driven wearable MoCap systems, the performance de-
creased for estimating unseen movements. As we discussed in Sec. 5, 
we cannot exhaust all possible upper-body movements&poses for 
evaluation. However, when we designed the study, we explicitly 
included dance and freestyle movements to better understand our 
system’s limitations on extreme and unseen poses and movement 
patterns. As shown in Fig. 10, across all three models, defned move-
ments (5.9cm, 6.8cm, and 8.3cm with 22.7min, 3.8min, and 0min 
of user data) have the smallest errors, followed by dance move-
ments (8.2cm, 9.5cm, and 10.8cm with 22.7min, 3.8min, and 0min 
of user data) and freestyle movements (10.8cm, 12.1cm, and 13.5cm 
with 22.7min, 3.8min, and 0min of user data). Adding user-specifc 
training data also consistently improves the tracking accuracy for 
each movement type. This result suggested that the system sim-
ilar to many data-driven systems, can further beneft from being 

Figure 11: Seam Removal Ablation Study Results. A larger 
MPJPE indicates that the removed seam is more important. 
Error bars represent the standard deviation across partici-
pants. 

trained with a much larger dataset containing a large variety of 
body movements. However, as a proof of concept, it still showed 
reliable tracking performance on unseen movements and subjects. 

6.5 Seam Removal Ablation Study 
For our prototype, we chose a long-sleeve shirt with 8 seams, 4 each 
on the left and right side of the shirt. Intrigued by the question of 
how diferent seam placements contribute to the model and how 
our approach will generalize with even fewer seams on a short-
sleeve shirt and sleeveless shirt, we conducted a seam removal 
ablation study on the 6 odd-numbered participants. Because the 
seam placements are symmetric, we remove 2 symmetric seams 
(e.g., left and right sleeve electrodes together) at a time, and train 
with the rest 6 seams. We trained user-adaptive models and user-
independent models for the 4 possible seam removals. As shown in 
Fig. 11, with no surprise, given the small number of signal channels 
for a complex tracking task, removing any seam in any model leads 
to an increased error. However, some seam placements have larger 
efects than others. 

As we discussed in Sec. 4.3, the shoulder top seams have the small-
est changes in magnitude, removing them does not harm the perfor-
mance greatly: 0.2cm, 0.2cm, and 0.5cm worse with 22.7min, 3.8min, 
and 0min of user data. The shoulder front/back seams have similar 
signifcance across all models, and removing them increases the 
errors by 1.0cm/0.9cm, 0.8cm/1.0cm, and 1.0cm/1.1cm with 22.7min, 
3.8min, and 0min of user data. On the other hand, the sleeve elec-
trodes’ importance varies across models. For both adaptive models, 
the sleeve electrodes have the most important placements (i.e., their 
removal causes the largest errors compared with other placements) 
which lead to about 1cm additional error when removed. For the 
user-independent model, the sleeve electrodes become the least 
important placement and only lead to an additional error of 0.3cm. 
The observation implies that signals from some placements (sleeve) 
generalize across users worse than others do. Furthermore, given 
the reasonable performance across all three models with the sleeve 
electrodes removed, SeamPose has the potential to generalize on 
short-sleeve shirts and even sleeveless ones. 
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Table 1: Situating SeamPose’s tracking performance in the lit-
erature. “UI” stands for user-independent MPJPE.“UD” stands 
for user-dependent/adaptive MPJPE. 

Tracking Device(s) UI 
(cm) 

UD 
(cm) 

MI-Poser [5] 
2023 

magnetic and inertial sensor 
fusion on a headset&2 controllers 6.6 -

PoseSonic [37] 
2023 

acoustic sensing 
on smartglasses 6.2 5.6 

LIP [66] 
2024 

4 IMUs 
on a jacket 10.58 -

MocaPose [63] 
2023 

16 conductive patches 
on a jacket 8.8 8.6 

SeamPose 
8 conductive seams 

on a shirt 8.6 6.0 

6.6 Performance Comparison with Prior Works
SeamPose is the frst to repurpose seams into capacitive sensors 
in clothing for body pose tracking. Direct comparisons with other 
works are difcult because SeamPose and some other related works 
used diferent datasets to evaluate the performance. Factors like 
training data duration, pose/movement set design, data collection 
setup, etc. heavily afect the performance. Thus, we only include the 
comparison for an empirical comparison to help readers to situate 
our performance in the literature. As this table 1 showed, SeamPose 
performance is comparable with prior wearable pose tracking sys-
tems while keeping the appearance of the shirt largely unchanged. 

6.7 Perceived Comfort 
In addition to its promising tracking ability, our sensing approach 
aims to preserve the soft and comfortable nature of clothing. Based 
on the survey results, the participants felt very comfortable (Me-
dian=5 on the 5-point Likert scale; 1=very uncomfortable, 5=very 
comfortable) with the shirt prototype and perceived it as similar 
to their everyday clothing (Median=5 on the 5-point Likert scale; 
1=very diferent, 5=not diferent at all). 

7 DISCUSSION, LIMITATIONS & FUTURE 
WORK 

SeamPose demonstrates a minimally obtrusive continuous upper-
body pose-tracking solution powered by a minimally altered shirt. 
The proof-of-concept prototype system was evaluated in a lab study 
to demonstrate its feasibility in tracking upper body pose. In this 
section, we discuss the limitations of our current implementation 
and the opportunities and challenges of ubiquitous seam-enabled 
pose-tracking integration into everyday apparel. 

7.1 Improving Tracking Performance 
From prototyping the proof-of-concept shirt, we found the seam 
signal quality is mainly infuenced by (a) the thread selection: con-
ductivity and insulation (Sec. 4.1); and (b) the positions and number 
of seam electrodes (Sec. 3). We chose to constrain the latter for our 
design choice of minimal alteration and maximal generalizability 
and explored the positions and the number of seams with the seam 

removal ablation study, but an extensive characterization of such 
factors may improve the information gain. 

Although our tracking performance is comparable with state-of-
the-art loose clothing pose-tracking systems, we observed the drop 
in performance with unseen users and unseen movements (detailed 
in Sec. 6), a limitation that plagues many data-driven wearable 
sensing technologies. Inspired by recent IMU-based pose-tracking 
advancements empowered by large synthetic datasets (generated 
from attaching virtual IMUs to SMPL meshes) [22, 39, 66], we plan 
to explore simulating seam electrodes’ capacitive measurements to 
address this issue. Prior works have simulated capacitive measure-
ment on the human body for activity recognition [12], and more 
recently, Schöfmann used a 3D fnite-element method to simulate 
capacitive touch readings for human-robot interaction [48]. Addi-
tionally, other thread-based sensing approaches like triboelectric, 
piezoelectric, and impedance sensing [36, 59, 62] can be integrated 
into seams and become multi-model seam sensors to complement 
the current system and further improve the tracking performance. 

As shown in Fig. 9, adding more user-specifc data to the current 
user-adaptive model seems to not signifcantly improve the perfor-
mance. In the future, we plan to make prototypes of diferent sizes 
(i.e., small/medium/large) and introduce user descriptors (e.g., an-
thropometric data) as inputs to the deep learning pipeline to better 
learn the variations among diferent body shapes. Moreover, more 
data from other users at a signifcantly larger scale for training the 
user-independent model may improve both the user-independent 
and -adaptive performances as shown in many prior systems. 

Another limitation of our current implementation is that we do 
not estimate global orientation, even though relative joint tracking 
sufces for applications like activity recognition, rehabilitation, 
etc. For use cases that require global orientation, SeamPose could 
become a part of a multi-device pose tracking framework (e.g., along 
with headsets for hands-free AR/VR uses or smartphones for mobile 
interactions). 

7.2 Manufacturing at Scale for Everyday 
Wearing Experience 

In this paper, we repurposed the seams by machine-sewing conduc-
tive threads over existing seams. The fabrication process is simple 
and holds tremendous potential for integration into industrial pro-
cesses. If the insulated conductive thread (Sec. 4.1) can withstand 
mechanical stress induced by industrial sewing machines and/or 
sergers, not explored in this paper, the sensing seams can be easily 
integrated into the industrial scaled cut-and-sew process by simply 
replacing the bobbin thread with conductive thread. Instead of re-
purposing existing seams like the method we propose in this paper, 
seams can be functional as soon as they are created at factories. 

Beyond industrial mass manufacture, we share some challenges 
with current research related to garments when aiming for every-
day uses, i.e., the garments need to be waterproof and wear-proof. 
One key avenue is in designing a washable sensing shirt with a 
detachable or washable sensing board [51]. Further, extensive char-
acterization of durability and possible performance degradation 
over wears (e.g., hysteresis), and mitigation approaches are essential 
for real-world adoption. 
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7.3 Evaluation in Real-World Settings 
We evaluated SeamPose extensively in a controlled lab setting as 
a proof of concept to justify the feasibility of this approach. How-
ever, there are scenarios that our system needs to be further tested 
for real-world deployments. For instance, while the participants 
wore their own shirts (diferent materials with diferent dielectric 
constants and long-/short-/no sleeves with diferent amounts of 
skin contacts) underneath the shirt, we did not investigate putting 
clothes over our prototype, which is common when wearing a shirt. 

Moreover, our seam electrodes are capacitive sensors that inher-
ently sense touches and proximity. Because the seam electrodes 
are very small in size, they are very insensitive to changes in even 
near proximity [17, 63]. At the signal level, there are no changes in 
the seam signals when the wearer touches electrically grounded 
and other objects that could cause electromagnetic (EM) interfer-
ences, but there are small (relative to body movements and direct 
electrode contacts) changes when other objects/people approach 
the electrodes within about 5cm. This fnding is consistent with 
prior work [63]. As the tracking level, with our real-time pipeline, 
there is no obvious performance degradation in the above situa-
tions. However, it remains rather sensitive to touches and direct 
contact, especially heavy ones causing thread deformation, which 
may happen during intense exercise or while sleeping. Therefore, to 
deploy the system for everyday pose-tracking wearing experiences, 
the system needs to be fne-tuned to be robust to these noises. We 
plan to take a data-driven approach to collect more data in these 
scenarios and update our machine-learning model to handle the 
noise as mentioned above. 

SeamPose focuses on leveraging seams in a shirt for upper body 
motion estimation. Similar to prior work [63], we were only able 
to evaluate our approach in one shirt with one kind of commonly 
seen seam placements. However, there are many diferent cloth-
ing patterns. For example, seam electrodes around the wrists at 
the sleeve cufs could improve/enable forearm/palm orientation 
tracking, respectively. The seam pattern we chose has one of the 
smallest numbers of seams for long-sleeve garments, so we believe 
that SeamPose can be generalized to apparel with more seams, 
which ofers more information on upper-body pose for the model 
to learn. 

7.4 Diferent Seam Patterns in Everyday 
Apparel 

As the ablation study shows, the performance decreased as we re-
moved the sleeve electrode but the model can still infer the upper 
body pose from the seam electrodes around the shoulders. This 
indicates our approach holds the potential to work on short-sleeve 
shirts and sleeveless shirts with a slightly worse performance. How-
ever, if the shoulder electrodes do not exist, such as on strapped and 
strapless tops, it is unclear how our system will work. In the future, 
we plan to integrate sensing seams into more clothing patterns, 
including tops and bottoms (i.e., pants, shorts, skirts). Further, we 
chose the zigzag stitch as a common stitch for seaming on home 
sewing machines. Zigzag stitches are stretchable and allow natural 
fabric stretches as the wearer moves. Stretching the fabric with 
sewn thread in any direction decreases the measured capacitances. 

After hundreds of sessions with our prototype, there is no perfor-
mance degradation caused by permanent deformations. From our 
experience, the stitch type may impact the raw signal qualities but 
is unlikely to greatly impact the tracking performance. Neverthe-
less, a formal characterization of stitch types (e.g., overlock stitches 
common for industrial seaming) remains essential for future work. 

8 CONCLUSION 
We presented SeamPose, repurposing seams as capacitive sensors in 
a shirt for upper-body pose tracking. Without modifying the cloth-
ing surface, SeamPose integrates motion-capturing capabilities into 
clothing unobtrusively and "invisibly". In our proof-of-concept pro-
totype, we machine-sewed conductive thread over existing seams in 
a long-sleeve shirt. The capacitive readings of the seam electrodes 
change as the wearer’s body pose changes. Then the capacitive 
signals, acquired by an untethered sensing board, are processed by 
a customized deep-learning pipeline and continuously estimate 8 
upper-body joint positions in 3D, relative to the pelvis. We eval-
uated SeamPose with a 12-participant user study and achieved a 
mean per joint position error (MPJPE) of 6.0 cm, comparable with 
that of related works, paving the way for everyday pose-tracking 
smart clothing. 
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A USER STUDY VIDEO INSTRUCTION 
DETAILS 

There are 54 instruction videos: 

• 1-20: 20 gestures from [7] - lean forward, lean backward, 
lean to left, lean to right, turn left, turn right, shrug, pinch 
waist, forearm block, open arms, hands on the head, arms 
up, fappy bird, claps, walk ([7] indicates fake walk but we 
allowed the participant to locomote), butterfy swing, respect 
gesture, confuse gesture, frame picture, and stop gesture. 

• 21: golf swing 
• 22: right tennis swing 
• 23: left tennis swing 
• 24: right basketball dribble 
• 25: left basketball dribble 
• 26: basketball shooting 
• 27: punches with alternate hands 
• 28: left arm swing on the side of the body (like walking) 
• 29: right arm swing on the side of the body (like walking) 
• 30: left arm swing in front of the body 
• 31: right arm swing in front of the body 
• 32: head sequence 1 - move the head downward and upward 
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• 33: head sequence 2 - rotate the head clockwise and counter-
clockwise 

• 34: head sequence 2 - rotate the left and right 
• 35: head sequence 3 - tilt the head from shoulder to shoulder 
• 36: shoulder sequence 1 - move the shoulders up and down 
• 37: shoulder sequence 2 - move the shoulders forward and 
backward 

• 38: shoulder sequence 3 - rotate the shoulders forward and 
backward 

• 39-41: arm sequence - with the arms down, the left/right/both 
arm(s) curl(s) from the inside, neutral, and outside tracks 
sequentially 

• 42-44: arm sequence - with the arms open to the sides and 
parallel to the ground, the left/right/both arm(s) curl(s) from 
the inside, neutral, and outside tracks sequentially 

• 45-47: arm sequence - with the arms front and parallel to 
the ground, the left/right/both arm(s) curl(s) from the inside, 
neutral, and outside tracks sequentially 

• 48-50: arm sequence - with the arms raised over the head, 
left/right/both arm(s) curl(s) from the inside and neutral 
tracks sequentially (curing arms from the outside track are 
difcult to perform) 

• 51-52: arm sequence - with the left/right arm open to the 
side, the right/left arm raises over the head and curl(s) from 
the inside and neutral tracks sequentially 

• 53-54: arm sequence - with the left/right arm front and par-
allel to the ground, the right/left arm raises over the head 
and curl(s) from the inside and neutral tracks sequentially 

Table 2: Anthropometric data of participants. 

Arm Length 
(cm) 

Bust 
(cm) 

Waist 
(cm) 

Height 
(cm) 

Weight 
(kg) 

mean 56.6 89.8 76.8 169.7 63.3 
std 3.3 6.3 7.7 10.6 11.7 
max 65.0 99.0 92.0 190.5 83.9 
min 53.0 78.0 66.0 153 49.9 
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