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Figure 1: SpellRing is a smart ring that uses an AI-powered sensing system designed to recognize continuous fingerspelling. 

Abstract 
Fingerspelling is a critical part of American Sign Language (ASL) 
recognition and has become an accessible optional text entry method 
for Deaf and Hard of Hearing (DHH) individuals. In this paper, we 
introduce SpellRing, a single smart ring worn on the thumb that 
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recognizes words continuously fingerspelled in ASL. SpellRing uses 
active acoustic sensing (via a microphone and speaker) and an in-
ertial measurement unit (IMU) to track handshape and movement, 
which are processed through a deep learning algorithm using Con-
nectionist Temporal Classification (CTC) loss. We evaluated the 
system with 20 ASL signers (13 fluent and 7 learners), using the 
MacKenzie-Soukoref Phrase Set of 1,164 words and 100 phrases. 
Offline evaluation yielded top-1 and top-5 word recognition ac-
curacies of 82.45% (±9.67%) and 92.42% (±5.70%), respectively. In 
real-time, the system achieved a word error rate (WER) of 0.099 
(±0.039) on the phrases. Based on these results, we discuss key 
lessons and design implications for future minimally obtrusive ASL 
recognition wearables. 
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1 INTRODUCTION 
Fingerspelling is used in American Sign Language (ASL) to spell out 
words without corresponding signs, such as proper nouns, names, 
and technical terms [18, 25]. It is estimated that between 12-35% of 
casual ASL conversation comprises fingerspelling [46, 53]. Recently, 
fingerspelling has also become a more feasible option for text en-
try 1 on devices such as mobile phones [19, 45], home assistants 
[13, 44], and VR/AR devices [11, 12, 20], thereby enhancing acces-
sibility for Deaf and Hard of Hearing (DHH) individuals. Given 
that ASL fingerspelling involves differentiating handshape, palm 
orientation, and movement on a single hand, while ASL signs re-
quire distinguishing these properties on both hands in addition to 
sign location (where the sign is articulated relative to the signer’s 
body) and non-manual markers (such as facial expression and body 
position) [26, 68], accurate fingerspelling recognition is a crucial 
first step in creating comprehensive ASL recognition systems and is 
essential for providing DHH individuals with accessible text entry 
tools. While the computer vision community has achieved promis-
ing performance in using cameras to detect hands and track finger 
movements [3, 22, 64], vision-based approaches are not always 
portable and raise privacy concerns ( e.g., placing a camera in front 
of a user’s hand is not always feasible.) To address these issues, 
researchers have explored wearable systems like gloves [2, 24, 52], 
rings [45, 71], and wristbands [6, 31]. However, previous studies 
suggest that signers prefer for wearable ASL recognition systems 
to be minimally obtrusive, accurate, and non-disruptive to their 
natural signing behavior [28]. Unfortunately, existing wearable 
ASL systems often fall short in at least one of these areas. Many 
require bulky hardware [30, 45, 58, 59, 65, 74] that instruments the 
entire hand or all fingers, which is not practical for everyday use. 
Furthermore, most systems only recognize isolated manual letters, 
a significantly easier task for recognition that also forces signers to 
change their natural signing behavior by pausing between letters 
while fingerspelling. While fingerspelling, signers naturally tran-
sition between letters continuously, and individual letters are not 
always distinct. Moreover, the handshape and other properties of a 
letter may vary depending on articulatory properties of neighbor-
ing letters within the word [26]. As shown in Figure 2, the same 
signer may produce different handshapes for the letter ‘E’ within a 
single word, such as in B-E-L-I-E-V-E; similarly, ‘I’ differs from its 
1https://www.kaggle.com/competitions/asl-fingerspelling 

Figure 2: Handshape variation resulting from coarticulation 
of adjacent fingerspelled letters: Note that the final ‘E’ ap-
pears differently from other occurrences of the same letter, 
and ‘I’ is coarticulated with ‘L’ (in red). 

standard form due to coarticulation with the preceding ‘L’. Account-
ing for this natural variation complicates continuous fingerspelling 
recognition. Given these challenges, the central research question 
we address in this paper is: 

• Can we design a minimally obtrusive wearable system that 
can continuously recognize fingerspelled strings without 
changing signers’ behaviors? 

To tackle this challenge, we introduce SpellRing, a deep-learning-
powered ring capable of recognizing 1,164 continuously finger-
spelled words [39] without altering signers’ fingerspelling behavior. 
SpellRing is a single ring worn on the thumb, utilizing two sensing 
modalities to capture subtle variations in handshape and movement. 
The first modality is active acoustic sensing, where a microphone 
and speaker pair embedded in the ring detect the shape of the entire 
hand (including all fingers), as demonstrated in [71]. The second 
is inertial sensing with a gyroscope, which tracks finger motion 
and helps distinguish between letters with similar handshapes but 
different palm orientations or movements (e.g., ‘K’ and ‘P’, ‘I’ and 
‘J’) [72, 73]. For instance, ‘K’ and ‘P’ involve identical handshapes 
but different palm orientations — for ‘K’ the palm faces the inter-
locuter (outward), while for ‘P’ the palm faces downward. The data 
from these sensors are fused and processed through a custom data 
processing pipeline and multimodal deep-learning model incorpo-
rating Connectionist Temporal Classification (CTC) [16], which 
allows the system to recognize English words from a time series 
of continuous fingerspelling. This algorithm enables the system to 
recognize words without the need to label individual letters. 

To understand how SpellRing performs with signers, we con-
ducted two user studies with 20 participants, focusing on word-level 
recognition and real-time phrase-level recognition of the system 
across several days. In both studies, participants naturally finger-
spelled words. In Study 1, we evaluated word-level fingerspelling 
recognition with 9 participants, including 5 ASL learners and 4 
fluent signers, collecting approximately 40 hours of data (20,952 
words) with an average accuracy of 89.8%, where recognition for 
ASL learners (M = 94.38%, SD = 4.28%) outperformed that for fluent 
signers (M = 84.06%, SD = 9.26%). In Study 2, we assessed phrase-
level fingerspelling recognition with 11 participants in real-time, 
collecting about 45 hours of training data and testing 100 phrases 
over approximately 20 hours. The Word Error Rate (WER) was 0.099 
(SD = 0.039) with the aid of a language model. After Study 2, a qual-
itative survey revealed that most participants (N=8) were satisfied 
with SpellRing’s real-time performance. Based on these findings, 

https://doi.org/10.1145/3706598.3713721
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we provide design recommendations for improving interaction and 
algorithm development to enhance usability for DHH individuals. 

The contributions of this paper are: 

• The first wearable-based real-time ASL fingerspelling recog-
nition system that fuses active acoustic sensing with IMU 
on a ring. 

• A multimodal deep-learning pipeline that integrates active 
acoustic sensing and motion data for continuous finger-
spelled word recognition, using Connectionist Temporal 
Classification (CTC) loss. 

• A comprehensive evaluation involving 20 ASL signers (13 
fluent signers and 7 ASL learners), demonstrating the sys-
tem’s performance across a range of signing experiences, 
speeds, and personal habits. 

• A discussion on the opportunities and challenges in design-
ing AI-powered wearables to support DHH individuals in 
ASL communication. 

2 Related Work 
Here, we will discuss prior work that recognizes ASL fingerspelling 
using cameras, and different types of wearable form factors. 

2.1 Vision-based Approach 
ASL fingerspelling involves complex handshapes that necessitate 
tracking all fingers for recognition. Thus, early-stage research 
focused on recognizing hand appearance using vision-based ap-
proaches (e.g., cameras), yielding high performance on 26 isolated 
English/ ASL letters [9, 10, 14, 27]. Most previous studies have fo-
cused on recognizing isolated manual letters with high performance, 
achieving over 95% accuracy [5, 7, 21]. However, given that recogni-
tion of isolated manual letters differs significantly from natural, con-
tinuous fingerspelling, recent work has shifted toward continuous 
fingerspelling recognition. Notably, studies using in-the-wild video 
datasets, such as the FSWild+ dataset [64], have shown promising 
results, with performance reaching up to 71.3%. Along with the de-
velopment of sequential recognition models (HMM [14, 45], LSTM 
[54, 64], CTC clasification [8, 15, 17]), performance on continuous 
fingerspelling recognition has improved. However, vision-based 
methods are limited by their costly setup (e.g., by requiring a cam-
era positioned in front of the signer); wearable systems (such as 
wearing a glove, multiple rings, or a wristband) have proposed more 
portable alternatives. 

2.2 Wearable-based Approach 
To address the limitations of the vision-based methods mentioned 
above, wearable-based approaches have attempted to recognize 
fingerspelling using various form factors, such as data gloves and 
wristbands. The data glove, which includes flex sensors [59, 60], 
stretchable strain sensors [38], magnetic sensors [58], and/ or IMU 
sensors [30, 45, 60], provides highly reliable information on hand 
joints, detecting both static and dynamic fingerspelling with over 
96% accuracy [30, 59, 60]. Despite the reliable and high perfor-
mance, comfort remains a concern among DHH users [28], and 
these devices can impair the dexterity of finger movements, thereby 
affecting ease of use for DHH individuals. 

A wristband using electromyography (EMG) can track finger 
muscle movements [65], providing a more usable form factor with 
a single device worn on the wrist. It has recently demonstrated 
promising performance in recognizing isolated manual letters, achiev-
ing 99.1% accuracy [65] and 95.36% accuracy [56]. Additionally, it 
has shown the ability to recognize various ASL signs [1, 75] with 
accuracies over 92.4%. However, continuous fingerspelling recogni-
tion is challenging due to the subtle, continuous transitions between 
letters and the fine-grained movements involved, which may be 
difficult for EMG sensors to capture accurately and consistently 
across different wearing sessions, a widely known issue for EMG 
sesnsors. Furthermore, the armband with electrodes is dispreferred 
among DHH users, especially for its poor ease of use and appear-
ance [78], and can struggle to deliver reliable performance due to 
the inherent limitations of EMG sensors [4, 29] such as calibration, 
false muscle detection, and surface preparation (including hair re-
moval). Recent work, EchoWrist [31], demonstrated continuous 
finger tracking using a wristband with embedded acoustic sensing, 
capable of tracking various hand gestures, including isolated ASL 
digits from 0 to 9. However, while it enables hands-free tracking and 
classification, its sensor placement is susceptible to obstruction by 
clothing, such as long sleeves. Therefore, more effort is required to 
develop a practical fingerspelling recognition device. A ring-shaped 
device holds potential for achieving both accuracy and comfort. 

2.3 Ring-based ASL Approach 
Similar to the glove, a ring-shaped device places IMU sensors on 
the fingers, achieving similar performance for continuous finger-
spelling. Fingerspeller [45] achieved 91% accuracy on 1164 unique 
words and demonstrated the ability to recognize fingerspelled 
words using four rings, with two rings performing at 81% accuracy 
on three signers. However, their work [45] showed that more IMUs 
are needed on each finger to track the complex movements of fin-
gerspelling. Furthermore, how it would perform on a larger group 
of native/ fluent signers is unknown. Additionally, [78] showed that 
this ring-based form factor scores higher on user experience in ease 
of use, comfort, and appearance, as compared to GyberGlove2 and 
the Myo EMG device3 . However, current technology still requires 
multiple rings for recognizing continuous fingerspelling, leaving 
room for improvement on a factor design. 

Recently, Ring-a-Pose [71] demonstrated the ability to track 3D 
handshapes using a single ring with active acoustic sensing, achiev-
ing reliable performance on a limited set of hand pose gestures, 
including the isolated 10 ASL digits (0–9), with a joint error of 14.1 
mm. Based on research by [63, 64], which utilizes finger tracking 
with skeleton information for continuous fingerspelling recognition, 
Ring-a-Pose appears promising for this task. However, its ability 
to recognize complex and fast continuous fingerspelling remains 
uncertain. As hand-tracking error increases, research by [67] shows 
a general downward trend in classification accuracy for 26 isolated 
letters, highlighting the importance of reliable hand tracking for 
fingerspelling recognition. However, given that Ring-a-Pose has a 
14.1 mm joint error compared to the reliable hand-tracking method 

2https://www.cyberglovesystems.com/
3https://wearables.com/products/myo 
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Table 1: Comparison with Previous Work: "O" indicates a real-time system, while "X" indicates no real-time capability. Note 
that SpellRing is a single ring that enables continuous real-time fingerspelling recognition, as evaluated by DHH users. 

Evaluation Set Form factor Types Real-time Acc. # of signers 
Jani, et al. [23] 26 ASL letters Data Glove isolated "O" 96.5% 8 (N/A) 
Yoon, et al. [70] 24 ASL letters 5DT DataGlove isolated "O" 91.1% 5 (N/A) 
Savur, et al. [62] 26 ASL letters Myo Armband isolated "O" 60.8% 10 (all DHH) 
Saquib, et al. [61] 26 ASL letters Data Glove isolated "O" 96.0% 5 (N/A) 

Lee, et al. [30] 27 words IMUs on fingertips continuous "X" 99.8% 12 (All ASL Learners) 
Martin, et al. [45] 1164 words 5 smart rings continuous "X" 91.0% 3 (1 DHH, 2 Experienced) 

SpellRing 1164 words Single ring continuous "O" 82.5% 20 (13 DHH, 7 ASL Learners) 

used in [63, 64], its potential for continuous fingerperlling recogni-
tion still needs further exploration. Furthermore, Ring-a-Pose [71] 
cannot track palm orientation, which is crucial for distinguishing 
between manual letters that share an identical handshape and differ 
solely in palm orientation (e.g., ‘K’ and ‘P’, ‘G’ and ‘Q’, ‘H’ and ‘U’) 
or movement (e.g., ‘I’ and ‘J’). Its resolution is also insufficient for 
the rapid pace of fingerspelling, as fast signers can fingerspell up to 
eight letters per second [18, 19, 25, 57], while the system tracks only 
one gesture over two seconds. Fingerspelling comprises 26 letters 
with similarities across many letters (e.g., ‘A’, ‘S’, ‘M’, ‘N, and ‘T’; ‘C’ 
and ‘O’; ‘K’ and ‘P’); fingerspelling recognition is thereby a much 
more complex task than ASL digit recognition. Fast fingerspelling 
and signers’ individual habits, such as skipping letters or coarticu-
lating neighboring letters [26], also lead to variations in handshape 
for the same letter. Unlike isolated gestures in Ring-a-Pose [71], 
continuous fingerspelling requires sequential processing to differ-
entiate handshape variations and letter transitions. These inherent 
challenges necessitate a new approach to continuous fingerspelling 
recognition. 

In this paper, we propose SpellRing, which integrates active 
acoustic sensing [71] and an IMU on a thumb-mounted ring to track 
handshape, hand movement, and palm orientation; we investigate 
how it can be used to recognize continuously fingerspelled words 
produced by signers ranging from novice to native/ fluent in ASL 
proficiency. Table 1 summarizes previous work. 

3 SpellRing 
SpellRing is an AI-powered sensing system designed to recognize 
continuously fingerspelled words using a single ring. This section 
elaborates on the challenges of designing such a wearable device 
and details how we developed an AI-powered ring with intelligent 
sensing methods to achieve accurate recognition. 

3.1 Challenges 
Recognizing continuous fingerspelling poses several unique chal-
lenges that make it significantly more complex than recognizing 
isolated ASL letters: 

3.1.1 Complexity of Handshape, Movement, and Palm Orientation. 
American Sign Language (ASL) fingerspelling involves complex 
combinations of different handshapes, movements, and palm ori-
entations. This poses challenges for accurate fingerspelling recog-
nition. Some letters, such as ‘A’, ‘S’, ‘M’, ‘N’, and ‘T’ (see Figure 3), 
appear visually similar, while others like ‘K’ and ‘P’, ‘G’ and ‘Q’, or 

‘H’ and ‘U’ share the same handshape while differing in palm orien-
tation. Additionally, certain letters (e.g., ‘J’ and ‘Z’) involve specific 
hand movements, further complicating the recognition process. 

3.1.2 User-Dependent Customized Transitions. Continuous finger-
spelling introduces an additional layer of complexity due to its 
natural flow and quick transitions between letters (see Figure 3). 
These transitions vary significantly depending on letter sequences 
and individual signing behaviors [25, 26]. For instance, the letter 
‘E’ can be signed as either a closed or open form, with the open ‘E’ 
more commonly used during faster fingerspelling, particularly at 
the beginning or end of a word. Fluent signers can fingerspell at 
speeds of 5–8 letters per second [18, 25, 57], often blending adjacent 
letters [19, 26, 63]. This high speed increases both efficiency and 
user-specific signing behaviors, making the accurate recognition of 
continuous fingerspelling much more challenging than recognizing 
isolated ASL letters. 

3.1.3 Form Factor vs. Recognition Accuracy Trade-off. Designing a 
wearable device for ASL recognition presents a significant challenge 
in balancing form factor with user experience and recognition ac-
curacy. Glove-based devices with sensors on all fingers can capture 
detailed poses but are bulky and impractical for daily use, often 
hindering dexterity. Wristbands, such as EMG sensor bands, of-
fer better usability but struggle with performance issues due to 
the need for extensive training data across sessions and muscle 
variability. Rings with embedded IMUs are more user-friendly, but 
reliable recognition often requires multiple rings, which can still 
compromise simplicity. Capturing complex ASL handshapes and 
movements with a single ring remains a significant challenge, as it 
must balance unobtrusive design with the ability to capture detailed 
and reliable data for recognition. 

3.2 Hardware Prototype Design 
To address these challenges, we developed SpellRing, a single-ring 
system capable of recognizing fingerspelled words at the word 
level. Our design incorporates two key sensing modalities: acoustic 
sensing for handshape and IMU sensors for movement. 

3.2.1 Single Ring Approach. SpellRing is designed specifically for 
the thumb. While Ring-a-Pose [71] showed that rings could po-
tentially be placed on all five fingers to track handshape, thumb 
placement is ideal for ASL recognition. Placing the sensor on other 
fingers leads to blockage issues, especially when fingerspelling 
letters such as ‘A’, ‘S’, ‘M’, ‘N’, ‘L’, and ‘I’, and during transitions 
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Figure 3: Acoustic and IMU data over 26 isolated English/ASL alphabet letters and continuously fingerspelled words. Continuous 
fingerspelling adds complexity due to natural flow and quick transitions between letters, which alter sensor values depending 
on adjacent letters. 
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between these letters. This blockage makes it difficult both to fin-
gerspell and to capture handshape using acoustic sensing. We chose 
to position the ring on the thumb to minimize these blockage issues. 
We further discuss the ring’s placement and user experience in 
Section  

3.2.2 Sensing Modalities. 1) Active Acoustic Sensing: For handshape 
sensing, we chose to adpot active acoustic sensing on the ring. Only 
requiring low-power and miniature microphone and speakers, this 
sensing method has shown promising performance in tracking and 
understanding various body postures on wearables[31, 34–37, 40– 
43, 55, 66, 71, 76, 77]. Similar to Ring-a-Pose[71], the ring acts as a 
‘scanner’ by emitting inaudible sound waves (frequency range of 
20-24 kHz) to scan hand shapes. These sound waves are reflected 
and refracted by the fingers and received by the microphone on 
the ring. The preprocessed reflected acoustic signal patterns vary 
with different hand shapes, leading to precise estimation of hand-
shape [71]. However, our earlier experiments (see Table 2) with 
users of varying fingerspelling skills—especially in speed—using 
Ring-a-Pose showed that the system struggled to handle rapid fin-
gerspelling of a participant with 10 years of ASL signing experience 
with a fingerspelling speed of up to 5 letters per second, resulting in 
an accuracy of 57.93% on 1,164 words; our experiment is described 
in detail in Section 5.3. To capture sufficient information during fast 
fingerspelling, we increased the sampling rate by six times based 
on our hardware capabilities. This adjustment reduced the sensing 
range from 2.06 m (as with Ring-a-Pose [71]) to 34.3 cm, focusing 
more on finger and hand movements and capturing information 
every 0.12 seconds to classify letters. These changes led to improved 
performance, achieving an accuracy of 86.03%—we used this setup 
for our full experiment. 

7.10.

Table 2: Performance over Fingerspelling Speed and Sam-
pling Rate. FPS (Frame Per Second), H (Hearing), CODA 
(Child of Deaf Adults), G (Gender), # (Max Letters Per Second) 

Experience G Year # FPS - 87 FPS - 490 
P1 Leaner, H M 1 2 92.99 (2.01) 93.32 (1.89) 
P2 Leaner, H F 5 4 62.67 (3.49) 86.86 (4.33) 
P3 CODA, H M 10 5 57.93 (3.61) 86.03 (3.87) 

2) IMU for Hand Movement: To track hand movement and palm 
orientation, we utilize a gyroscope from the IMU module [72, 73]. 
This allows us to measure changes in rotational velocity (angu-
lar velocity) around three axes (x, y, and z). By integrating these 
measurements over time, we can track changes in hand movement, 
making it easy to distinguish letters with similar handshapes but 
different palm orientations. 

3.2.3 Hardware Components. As shown in Figure 4, the ring in-
corporates a microphone (TDK-ICS-43434), a speaker (USound UT-
P2019), and a customized Flexible Printed Circuit Board (FPCB) 
(c) enclosed within a 3D-printed Polylactic Acid (PLA) case (f). It 
also features a microcontroller unit (MCU) (e), an SD card for data 
storage (b), and a 3.7V 70mAh LiPo battery (a). The ring is powered 
by the battery, which has a switch for toggling it ON/OFF. Once 
powered on, the acoustic sensing system initiates and automatically 

Figure 4: Hardware Prototype: (a) a 3.7V 70mAh LiPo battery, 
(b) an nRF MCU, (c) a customized Flexible Printed Circuit 
Board (FPCB) with a microphone and speaker, (d) an IMU 
sensor board (MPU6050), (e) an ESP32 Feather Board, and (f) 
a 3D-printed ring case. 

saves data to the SD card until powered off. The IMU sensor board 
(MPU6050) (d) includes 6-axis inertial motion sensors (accelerom-
eter and gyroscope), providing three-axis data output at a rate of 
150Hz. The IMU is connected to the microcontroller on the wrist 
via a flexible wire, and the microcontroller transmits the data to an 
external PC through a flexible USB cable. The acoustic data on the 
SD card and the IMU data on the PC are then synchronized based 
on timestamped records. 

3.3 Algorithms and Data Processing Pipeline 
SpellRing’s software pipeline is designed to process multimodal 
data from the acoustic and IMU sensors and recognize fingerspelled 
words accurately. Our approach incorporates sophisticated data 
processing techniques and a deep learning model optimized for 
sequence recognition. 

3.3.1 Acoustic Data Processing. Correlation-based frequency mod-
ulated continuous wave (C-FMCW) [69] is used as the transmitted 
signal for acoustic sensing. The received signals are processed to 
calculate an echo profile, following methods specified in prior work 
[37, 71, 77]. These echo profiles encode temporal and spatial infor-
mation of reflection and diffraction strengths, representing different 
handshape patterns. To isolate handshape changes from constant 
environmental reflections, we calculate the difference between con-
secutive echo frames, generating differential echo profiles. These 
profiles serve as the input representation of handshape patterns for 
our deep learning pipeline. 

3.3.2 IMU Data Processing. Tri-axial gyroscope data, sampled at 
150 Hz, is used to track palm orientation and rotational movement. 
Before feeding them into the deep learning model, we normalize 
the x, y, and z values and upsample them to synchronize with the 
acoustic data. This preprocessing step ensures that we can extract 
synchronized features from our multimodal deep learning pipeline. 

3.3.3 Deep Learning Pipeline. Our deep learning pipeline leverages 
Connectionist Temporal Classification (CTC) [15, 77], a method 
widely employed in sequence labeling tasks, to recognize finger-
spelled words continuously without needing to label or segment 
each letter. Aa shwon in Figure 5, the model architecture comprises 
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Figure 5: Fusion Model Framework 

two main components: an acoustic sensing model and an IMU 
sensing model. 

For the acoustic sensing model, we process differential echo pro-
files using a convolutional neural network (CNN) with ResNet-18 
as the backbone. During pooling steps, the convolutional layers are 
followed by one-dimensional average pooling—rather than pooling 
along both axes, we apply pooling only on the spatial axis. This 
approach preserves temporal information. The IMU sensing model 
employs a 2D CNN architecture to process IMU data, as our pilot 
study demonstrated that this approach slightly outperformed a 1D 
CNN in terms of CTC loss. 

The embeddings generated from both modalities are concate-
nated and then fed into a fully connected dense layer. This is fol-
lowed by a dropout layer to prevent overfitting, and finally, a soft-
max function to produce the output probabilities. This multimodal 
approach allows our system to effectively combine information 
from both acoustic and motion sensors, enhancing the accuracy of 
fingerspelling recognition. 

3.3.4 Data Augmentation and Training Scheme. To enhance perfor-
mance and streamline training, we adopted several techniques. To 
enhance the model’s adaptability to varying fingerspelling speeds 
with a fixed window size, we augment the dataset by merging con-
secutive fingerspelled words, simply concatenating up to four words. 
We also apply random noise during training to prevent overfitting 
and use random padding to handle variable-length inputs. Our train-
ing process involves a two-step approach: first training with data 
from all participants except one, then retraining with the specific 
participant’s data for leave-one-session-out cross-validation. We 
note that this two-step approach results in a user-dependent model, 
using 20 sessions collected from each participant over two to three 
different days, and the following reported results are based on this 
setup. User-independent results are further discussed in Section 
7.7. 

3.3.5 Word Correction. To correct potential errors in the model’s 
character sequence predictions, we compute the Levenshtein dis-
tance [32] between the predicted sequence and each unique word 
in a reference dictionary. The word with the smallest Levenshtein 
distance was selected as the corrected word, enhancing the overall 
accuracy of our system. To align our system evaluation with prior lit-
erature, specifically for performance comparison with FingerSpeller 
[45]—such as multi-ring versus single-ring setups—we adopted their 

evaluation method by using the MacKenzie-Soukoreff phrase set 
[39] as the reference dictionary. However, since the choice of refer-
ence dictionary affects the performance of the auto-correction, we 
discuss its impact using different dictionary sets in Section 7.4. 

4 User Studies Overview 
To evaluate the effectiveness and usability of SpellRing, we con-
ducted two user studies with signers ranging from novice to native/ 
fluent in ASL proficiency. The first study focused on word-level 
recognition, assessing the system’s ability to accurately recognize 
individual fingerspelled words across a diverse group of partici-
pants. The second study expanded on these findings by examining 
phrase-level recognition in real-time scenarios, providing insights 
into the system’s performance in more natural, context-rich envi-
ronments. These studies aimed to validate SpellRing’s performance 
across different levels of signing experience, explore the impact of 
signing speed and habits on recognition accuracy, and investigate 
how users adapt to the system in real-time use. The user study was 
approved by the Institutional Review Board (IRB) at the authors’ 
institution. Participants were compensated $40 per hour for their 
participation in the study. 

5 Word-level Recognition 

5.1 Purpose and Overview 
The primary objective of this study was to evaluate SpellRing’s 
ability to recognize individual fingerspelled words accurately and 
compare its performance to that of of multiple-ring setups, such as 
FingerSpeller [45]. We aimed to assess the system’s performance 
across a range of users with varying ASL proficiencies, ranging from 
novice to native. This study also sought to investigate the impact 
of signing speed and individual habits on recognition accuracy, 
providing important insights for system optimization and user 
adaptation strategies. 

5.2 Participants 
We recruited 9 participants (6 male, 3 female, mean age = 23.0, 
SD = 5.45) to evaluate our system, including 3 Deaf individuals, 1 
CODA (Child of Deaf Adults), and 5 hearing ASL learners. The 3 
Deaf participants and CODA were fluent signers, using ASL as a 
primary language. The 5 hearing ASL learners had between 1 and 5 
years of ASL learning experience (M = 3.0 SD = 1.4). All participants 
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Figure 6: Study Procedures: an English word with guide fin-
gerspelling images (left) and examples of experimental setup 
locations (e.g., in a study room (center); in a home (right)) 

fingerspelled with their right hand as their dominant hand. Detailed 
participant information, including proficiency and background, is 
provided in Table 6.5.2. 

5.3 Dataset and Procedure 
To ensure consistency with FingerSpeller [45], particularly for per-
formance evaluation, we adopted their dataset and procedure. Since 
we evaluated our system as an accessible optional text entry method, 
the MacKenzie-Soukoreff Phrase Set [39] was selected as the stan-
dard dataset, which is commonly used to evaluate text entry sys-
tems. This set comprises 500 phrases, totaling 1,164 unique words. 
The words in this set vary in length, ranging from a minimum of 
1 to a maximum of 13, with an average word length of 6.055 (SD: 
2.312). 

Each participant was tasked with fingerspelling each of these 
words twice, resulting in a comprehensive dataset of 2328=2*1164 
fingerspelled words per participant, which was collected in two 
rounds of data collection. During each round, a partcipant com-
pleted each word once across 10 sessions. Nine of these sessions 
contained 116 words each, and one session contained 120 words. 
We carefully ensured that there was no overlap in words between 
sessions and that each session maintained a similar distribution of 
letters and word lengths. The average word length across sessions 
was 6.053 (SD = 0.181), with median values of 5 or 6. 

The experiment was conducted in a semi-controlled environ-
ment, as illustrated in Figure 6. During each session, participants 
followed specific guidelines for fingerspelling. They were provided 
with real-time video feedback of their signing and were allowed to 
correct any mistakes as needed. To aid ASL learners, we displayed 
each English word with accompanying guide images of correspond-
ing ASL letters. Participants used their non-dominant hand to press 
a space key after completing each word, which allowed us to record 
the start and end times for each fingerspelled sequence to calculate 
participants’ fingerspelling speed. We instructed participants to 
return to a neutral hand pose between words and to fingerspell 
at their own comfortable, natural pace. Session durations varied 
from 5 to 13 minutes, depending on the participant’s fingerspelling 
speed. 

Data collection for each participant lasted around 4 hours, split 
across two to three days for each participant. To assess the effect of 
device positioning, participants were asked to remove and reattach 
the ring between sessions. This approach allowed us to collect data 
under various ring positions, simulating real-world usage scenarios. 

We collected a total of 20,604 fingerspelled words for system 
evaluation from the nine participants. However, due to technical 

issues, we lost data from three sessions: the 7th session of P1 (116 
words), the 7th session of P7 (116 words), and the 5th session of P8 
(116 words). 

5.4 Evaluation Metrics 
For evaluating recognition accuracy, we utilized two primary met-
rics: Letter Error Rate (LER) and word-level accuracy. LER measures 
the percentage of incorrect letters in the output compared to the 
ground truth, with a lower value indicating better accuracy. Word-
level accuracy was assessed based on top-1 to top-5 predictions, 
providing a comprehensive view of the model’s effectiveness. 

5.4.1 Letter Error Rate (LER). LER is a metric used to evaluate the 
accuracy of a system in recognizing or generating sequences of 
letters, such as in speech recognition, handwriting recognition, or 
fingerspelling recognition. It measures the percentage of incorrect 
letters in the output compared to a reference or ground truth. A 
lower LER indicates better accuracy in recognizing or generating a 
sequence of letters. We calculate LER before word correction. For 
example, when the target word is "hello" and the predicted word 
from the model is "helo", there is no substitution, one deletion (the 
second "l" is missing in the predicted word), and no insertion. In 
this case, the LER is 1/5 = 0.2. 

𝐿𝐸𝑅 = 
Substitutions + Deletions + Insertions 

Total number of letters in the reference sequence 
(1) 

5.4.2 Top N Word-level Accuracy. We also report word-level ac-
curacy based on top-1 and top-5 predictions, as this provides a 
more comprehensive evaluation of the model’s effectiveness. After 
collecting the word data, we calculate performance by determin-
ing accuracy, defined as the number of correctly predicted words 
divided by the total number of words. Additionally, we identify the 
top-3 potential words by selecting those with the smallest Leven-
shtein distances. For top-3 accuracy, if the correct word is among 
the three with the smallest Levenshtein distances, the prediction 
is considered correct; otherwise, it is incorrect. For example, if the 
input word is "fax" and the model predicts "aax", the three closest 
words by Levenshtein distance could be "fox", "tax", and "fax." In 
this case, the system’s prediction would be considered correct. 

5.5 Results 
Our analysis revealed that SpellRing achieved a promising overall 
accuracy of 89.89% (SD = 8.59%) for top-1 predictions and 95.72% 
(SD = 5.28%) for top-5 predictions in recognizing the 1,164 finger-
spelled words in our dataset. This performance is comparable to 
FingerSpeller [45] using two rings (87% accuracy), demonstrating 
the effectiveness of our single-ring approach. 

5.5.1 Top-N Word Recognition. SpellRing’s recognition accuracy 
improved with increasing N in top-N predictions. For top-1 pre-
dictions, the system achieved 89.89% (SD = 8.59%) accuracy. This 
improved to 92.85% (SD = 7.00%) for top-2, 94.37% (SD = 6.13%) 
for top-3, 95.20% (SD = 5.56%) for top-4, and reached 95.72% (SD = 
5.28%) for top-5 predictions. Table 3 illustrates the top-N word accu-
racy for each participant. The significant improvement from top-1 
to top-5 accuracy (a 5.83% increase) suggests potential benefits for 
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Table 3: Top-N Word Recognition and Participant Information: CODA: Child of Deaf Adults, H: Hearing. Years indicates number 
of years learning ASL or using it as a primary language. 

Offline Evaulation 
Word-level 

Experience Gender Years Top1 Top2 Top3 Top4 Top5 LER 
Avg. 5.44 89.8 92.8 94.3 95.1 95.6 0.131 
P01 Learner, H F 3 95.338 97.220 98.162 98.501 98.846 0.068 
P02 Learner, H M 5 89.161 92.943 94.796 95.612 96.172 0.126 
P03 Learner, H F 3 94.546 96.565 97.772 98.155 98.371 0.155 
P04 Learner, H M 1 97.851 98.968 99.226 99.527 99.614 0.042 
P05 Learner, H F 3 95.020 96.823 97.599 98.026 98.499 0.089 
P06 Deaf M 7 79.840 83.822 86.136 87.358 87.945 0.223 
P07 CODA, H M 10 87.884 91.705 93.641 94.628 95.187 0.162 
P08 Deaf M 10 77.636 83.739 86.901 88.662 89.837 0.211 
P09 Deaf M 7 90.688 92.993 94.397 95.665 96.345 0.105 

ASL translation applications. By considering multiple top predic-
tions, the system could leverage additional contextual information 
to produce more coherent and contextually appropriate sentences. 
This approach could help maintain the flow and meaning of the text 
by selecting from the best few options at each step. Furthermore, 
a user interface displaying the top three candidates immediately 
after prediction would allow signers to choose the correct option, 
potentially improving overall system accuracy. 

5.5.2 ASL Learners vs. Native/ Fluent Signers. We observed sig-
nificant variations in performance across participants, with top-1 
accuracy ranging from 77.63% to 97.85%. This variability can be 
attributed to differences in participants’ fingerspelling proficiency, 
affecting articulatory habits and speed. Notably, the model showed 
better performance for ASL learners (M = 94.38%, SD = 4.28%) than 
for native/ fluent signers (M = 84.06%, SD = 9.26%). We attribute this 
difference primarily to variations in fingerspelling speed. ASL learn-
ers took longer to complete each session (M = 428.88 sec, SD = 74.24) 
compared to fluent signers (M = 329.624 sec, SD = 42.54). ASL learn-
ers tended to fingerspell more slowly, clearly distinguishing each 
letter, while native/ fluent signers fingerspelled more quickly, result-
ing in greater handshape variation for certain letters and blurred 

Figure 7: Offline Word-level Performance over Completion 
Time in User study 1. Dots indicate each session. Note that the 
model tended to have lower performance for faster signers 
and better performance for slower signers. 

transitions between letters. This speed difference posed challenges 
for the model in accurately recognizing individual letters in rapid 
sequences. We further analyze the impact of fingerspelling speed 
on performance in the following section. 

5.5.3 Impact of Fingerspelling Speed on Performance. Fingerspelling 
speed varied among participants, leading to differences in task com-
pletion times. These speed variations, along with factors such as 
participants’ prior experience signing specific words and breaks 
taken between sessions, appeared to influence the model’s perfor-
mance (Figure 7). Specifically, the model had lower performance 
for faster signers and performed better for slower signers. 

We found that faster signing speeds often led to greater hand-
shape variation, potentially impacting our model’s performance. 
For instance, when signed quickly, some letters (e.g., ‘C’, ‘O’, ‘E’, 
‘I’) were often not fully articulated. The contrast in fingerspelling 
between the highest and lowest performing participants illustrates 
this effect. P05, an ASL learner with 3 years’ experience, achieved 
the highest performance with 97.85% (SD = 2.07%) accuracy. They 
articulated each letter very clearly and exhibited minimal hand-
shape variation, resulting in consistent data. In contrast, P08, a 
fluent signer, had the lowest performance at 77.64% (SD = 7.8%). 
Their fingerspelling speed varied across sessions and consisted of 
many allophonic handshape variations. 

These observations suggest that as fingerspelling speed increases, 
individual letters are articulated less fully and/or are coarticulated 
with neighboring letters, posing a challenge for accurate recogni-
tion. This challenge resembles those in early-stage speech recogni-
tion systems, which experienced performance drops when speakers 
spoke too rapidly or with strong accents. We discuss this in more 
detail in Section 7.6. 

6 Phrase-level Recognition 

6.1 Purpose and Overview 
Building on the insights from our word-level study, our second in-
vestigation aimed to evaluate SpellRing’s performance for real-time 
phrase-level recognition. We sought to understand how the system 
performs in more natural contexts, how users adapt their signing 
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Figure 8: Prototype for real-time phrase-level evaluation: (a) 
ESP32 S3 microcontroller, (b) nRF MCU, (c) IMU sensor, (d) 
FPCB, and (e) a 3D-printed ring-shaped design 

behavior to real-time feedback, and the effectiveness of language 
models in improving recognition accuracy. It is worth noting that 
most prior work [47, 56] using wearables does not evaluate fin-
gerspelling recognition continuously in real-time. This real-time 
performance study was a crucial step in assessing SpellRing’s poten-
tial for practical, everyday use in comprehensive ASL recognition 
systems. 

6.2 Participants 
We recruited 11 participants (4 male, 7 female, mean age = 32.0, SD = 
3.88) to evaluate our system, consisting of 8 Deaf individuals, 1 ASL 
interpreter, and 2 hearing ASL learners. The 8 Deaf participants 
use ASL as their primary language are fluent ASL signers and 
fingerspellers. The 2 hearing participants had been learning ASL 
for 1 and 2 years, respectively, contributing to differences in their 
fingerspelling proficiency. All participants fingerspelled using their 
right hand as their dominant hand. Detailed information about 
participants’ proficiency and background is provided in Table 6.5.2. 

6.3 Iteration on Hardware Prototype Design 
To evaluate our system in a more natural fingerspelling environ-
ment, we redesigned the ring prototype to a smaller form factor, 
enabling real-time evaluation. Our design optimized the device for 
comfort and ease of use while ensuring it supported continuous and 
real-time tracking for natural fingerspelling. As shown in Figure 8, 
audio data from the FPCB microphone (d) connected to our custom 
nRF MCU (b) and gyro data from the IMU (c) were synchronized 
and sent to an off-the-shelf ESP32 S3 microcontroller 4 (a). This data 
was then transmitted via the wire to a backend system for process-
ing through our machine learning pipeline, running on a MacBook 
Pro. The raw predictions were processed through autocorrection 
and language model pipelines to generate the final output. 

6.4 Language Model 
With our dataset, we used an N-gram language model to correct 
fingerspelled words within phrases. Based on the LM model de-
scribed in [79], we generated a list of top N words (N = 20) along 
with their similarity values after autocorrecting a raw predicted 
word. For each new predicted word in the top N, we applied bigram 

4Adafruit QT Py ESP32-S3 WiFi Dev Board with STEMMA QT - 8 MB Flash 

Figure 9: User Interface for Real-time Evaluation: The ground 
truth phrases are displayed in red, and the predicted phrases 
appear based on each fingerspelled word. Participants receive 
status updates below, such as ‘start signing’ and ‘processing.’ 

and trigram probabilities and selected the word set with the highest 
probability for the final predicted phrase. We then calcuated WER 
between the ground truth phrases and the final predicted phrases 
for evaluation. 

6.5 Dataset and Procedure 
For our phrase-level prediction evaluation, we again utilized the 
MacKenzie-Soukoreff Phrase Set [39], as in the first user study. The 
phrases ranged from 16 to 40 characters in length, consisting of 4 to 
8 words each. Our study procedure consisted of two main phases: 
initial data collection and real-time evaluation. 

6.5.1 Phase 1: Training Data Collection. We first collected training 
data from all 11 participants, following a procedure similar to Study 
1. Each participant provided two rounds of training data for 1,164 
words (2*1164). Our training process involves a two-step approach: 
first training with data from all participants except one, then re-
training with the specific participant’s data for real-time phrase 
evaluation. Each participant provided the two rounds of training 
data over two separate days. 

6.5.2 Phase 2: Real-time Evaluation. The real-time evaluation was 
conducted on a third day. In the real-time evaluation, we randomly 
selected 200 phrases generated from the 1164 unique words for 
our study. We used 100 phrases for practice and the remaining 100 
phrases for testing. 

We began with practice sessions, where participants were given 
100 phrases to familiarize themselves with our interface (Figure 
9) and the real-time feedback mechanism. This preparatory step 
ensured that participants were comfortable with the system before 
the actual evaluation. For the evaluation, we used the remaining 100 
phrases. Participants fingerspelled these phrases over the course 
of 5 sessions in natural environments such as their homes or quiet 
rooms. During each evaluation session, participants fingerspelled 
according to the prompts illustrated in Figure 9. 

Participants were first shown the phrase, and instructed to be-
gin fingerspelling each word after pressing the space key. As they 

       fingerspelled, the real-time prediction model provided immediate
feedback by displaying the predicted output in green on the in-
terface. Participants were instructed to proceed to the next word 
even if they saw a mispredicted word on the screen to ensure that 
they continued to fingerspell each word as displayed. The language 
model sometimes corrected a mispredicted word as signers com-
pleted more words in each phrase. 
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Table 4: Offline evaluation of 1,164 word-level recognition with WPM, Top N and LER, and real-time evaluation of 100 phrase-
level recognition with WER and WPM, G: Gender, H: Hearing, DHH: Deaf or Hard of Hearing. Year: Indicates ASL experience 
(years learning ASL or using it as a primary language) 

Offline Real-Time 
Word-level Phrase-level 

Types G Year Top 1 Top 2 Top 3 Top 4 Top 5 LER WPM WER WPM 
Avg. 11 82.60 87.45 90.19 91.56 92.54 0.149 39.9 0.099 20.1 
P01 Deaf M 10 84.87 89.17 92.43 93.64 94.58 0.127 32.1 0.041 22.3 
P02 DHH F 5 87.21 90.54 93.03 94.84 95.87 0.122 39.5 0.124 19.8 
P03 Deaf F 37 77.49 83.33 87.03 88.66 90.29 0.192 47.9 0.112 20.3 
P04 Deaf F 10 77.03 82.79 85.62 87.43 88.38 0.193 52.5 0.103 19.7 
P05 Deaf M 5 94.40 97.41 98.13 98.71 98.99 0.062 34.5 0.061 20.2 
P06 Deaf F 22 67.18 76.63 79.96 82.00 83.82 0.234 56.8 0.134 24.9 
P07 Deaf F 5 90.93 93.76 95.65 96.42 96.85 0.1 29.4 0.093 21.3 
P08 Deaf M 17 65.27 72.53 77.21 80.17 81.59 0.26 52.4 0.17 17.9 
P09 Intepreter, H F 10 85.94 89.67 93.09 93.37 94.86 0.119 30.1 - -
P10 Learner, H M 2 86.41 91.92 94.24 95.53 95.95 0.129 40.2 0.052 20.3 
P11 Learner, H F 1 91.92 94.15 95.70 96.38 96.73 0.098 23.1 0.101 14.1 

After completing each phrase, participants pressed the space key 
with their non-dominant hand to display the next phrase, allowing 
them to see and prepare for it. Once ready, they pressed the key to 
start the phrase and pressed it again upon completion. This action 
served a dual purpose: it advanced the interface to the next phrase 
and also marked the start and end times for fingerspelling. This 
timing information allowed us to calculate fingerspelling speed 
for each phrase by minimizing perception time, allowing for more 
precise estimation of participants’ fingerspelling speed and any 
adjustments they made in response to real-time feedback. The dura-
tion of each session varied based on the participant’s fingerspelling 
proficiency and typically ranged from 10 to 12 minutes. This varia-
tion in session length allowed us to accommodate different signing 
speeds and ensure that all participants could complete the phrases 
comfortably. 

In total, we collected data on 993 phrases from 10 participants. 
Due to technical issues, we lost data for seven phrases, and one 
participant was unable to complete the entire study. Despite these 
minor setbacks, the collected data provided a robust basis for eval-
uating our system’s performance in real-time, continuous finger-
spelling recognition. This two-phase approach allowed us to first 
train our system on participant-specific data and then evaluate its 
performance in a realistic, real-time scenario. 

6.6 Evaluation Metrics 
To evaluate our system, we use Word Error Rate (WER) to report 
performance. The WER metric ranges from 0 to 1, where 0 indicates 
that the compared texts are identical, and 1 indicates that they are 
completely different with no similarity. For example, a WER of 0.10 
means there is a 10% error rate in the compared sentences. WER 
is based on Levenshtein distance, but it operates at the word level 
instead of the phoneme (or in this case, letter) level. 

𝑊 𝐸𝑅 = 
Substitutions + Deletions + Insertions 

Total number of words in the reference phrase 
(2) 

6.7 Results 
Overall, SpellRing recognized 100 phrases with a WER of 0.099% 
(0.039%). While word-level performance achieved an average LER of 
0.149%, phrase-level WER improved with use of a language model. 

6.7.1 Recognition Performance. Our results show that fingerspelled 
words are better recognized within the context of a phrase using 
a language model (See Table 4). The model showed lower perfor-
mance for faster signers, such as P06 and P08, with a top-1 accuracy 
of 67.27% and 65%, and WERs of 0.134 and 0.17; this translates to 
approximately 15% error on the phrases. Compared to word-level 
recognition performance, this offers an improvement in recogniz-
ing fingerspelled words by applying corrections using a language 
model at phrase-level recognition. 

6.7.2 Signing Speed in Phrase-Level Prediction. We observed that 
participants adjusted their signing speed and habits according to the 
predictions displayed on the user interface, leading to a decrease in 
words per minute (WPM) for these participants, with WPM averages 
ranging from 39.87 (data collected in training phase) to 20.09 (data 
collected in real-time phase) (See Table 3). This decrease accounts 
for latency, including model processing time, participants’ reaction 
times, and participants’ fingerspelling more slowly in response to 
prediction accuracy. 

6.7.3 Qualitative Analysis. Participants were asked open-ended 
survey questions regarding their overall experience with SpellRing 
in terms of performance, form factor, and usability. For performance, 
8 out of 10 participants reported that the system performed well 
with the language model, even when phrases were entirely misclas-
sified. They noted that short fingerspelled words (e.g., "a," "I," "am", 
"be") were not always recognized accurately but could be corrected 
by the language model when more context was available. However, 
participants noted that the system did not always work well at 
first. In these cases, we observed changes in participant behavior 
based on predicted results; they tended to fingerspell more slowly 
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and distinctly immediately after they encountered recognition er-
rors. Although our offline evaluation demonstrated that the system 
works reliably without requiring participants to alter their signing 
behavior, real-time evaluation revealed that participants adjusted 
their fingerspelling habits dynamically to accommodate the system. 
Specifically, they slowed their fingerspelling immediately after ob-
serving misrecognized words but returned to their natural habits 
when the system performed accurately. 

After some practice sessions, some participants adjusted their 
fingerspelling speed and habits to accommodate the system. P01, 
P02, P05, and P07 stated that they focused on spelling clearly and 
distinctly without skipping letters. This directly contrasted their 
natural fingerspelling behavior, which often involved partially ar-
ticulated letters and quick, seamless transitions between letters. 

7 Discussion and Limitations 
In this section, we discuss the limitations of SpellRing, followed by 
the challenges and design implications of developing a ring-based 
ASL fingerspelling recognition system for potential future use by 
DHH individuals. 

7.1 Continuous Finger Tracking vs. Continuous 
Fingerspelling Recognition 

Although accurately tracking finger movement is fundamental for 
fingerspelling recognition, it does not guarantee successful recogni-
tion of continuous fingerspelling. Continuous fingerspelling recog-
nition requires an additional layer of linguistic and sequential pro-
cessing, separating indistinct handshapes and transitions between 
letters of fingerspelled words. First, finger movement tracking typi-
cally focuses on broad, fluid motions without the need to recognize 
distinct handshapes or subtle transitions between them. Continu-
ous fingerspelling, however, requires high precision to differentiate 
between similar handshapes, such as those for ‘M’ and ‘N’ in ASL. 
This requires detailed recognition of finger positions and transi-
tions, meaning that recognition performance can vary depending 
on the accuracy of the tracking [67]. Second, fingerspelling involves 
interpreting static handshapes as letters in sequence to form words. 
Misrecognizing even a single letter can change the entire meaning 
of the misrecognized word or phrase, highlighting the critical need 
for high accuracy and use of a language model to correct errors. 
In contrast, finger movement tracking does not require the same 
level of interpretation and can often tolerate minor errors in finger 
positioning. Finally, continuous fingerspelling recognition requires 
advanced algorithms, such as Connectionist Temporal Classifica-
tion (CTC), to parse specific handshape sequences since it allows 
the system to recognize fingerspelling continuously without need-
ing to label each fingerspelled letter. In contrast, finger movement 
tracking often relies on motion patterns or positions and lacks the 
nuanced training necessary to distinguish different handshapes of 
ASL letters and the transitions between them. 

7.2 Extending SpellRing for Large-Scale 
Fingerspelling 

In this study, we demonstrated how a single ring can recognize 
1,164 fingerspelled words across 500 phrases using the MacKenzie 

dataset, representing a significant advancement over prior wearable-
based ASL fingerspelling recognition systems. While the MacKenzie 
dataset provides an effective prototype for input systems, enabling 
us to estimate performance and potential, it also underscores the 
limitations of our system. We acknowledge that 1,164 words rep-
resent a small fraction of the vocabulary compared to commonly 
used fingerspelled words [63], including proper nouns, names, and 
specific terms essential for ASL conversational vocabulary. Since a 
more extensive vocabulary would encompass a broader range of 
fingerspelling behaviors and transitions within words, our system 
could benefit from a significantly larger dataset, which we believe 
extends beyond the scope of a single research paper. 

Our experiments, however, revealed that pre-training a model 
on data from other participants and fine-tuning it with the target 
participant’s data significantly improved performance. We evalu-
ated SpellRing using a two-step training model, incorporating data 
from all participants to explore how leveraging cross-participant 
information could enhance system performance. For comparison, 
we tested the model using each participant’s individual data with 
leave-one-session-out cross-validation. The results from both Study 
1 and Study 2 showed a top-1 accuracy of 77.21% (SD=8.94) when 
trained on individual data, while the pre-trained model with data 
from other participants improved performance by 5.24%, achiev-
ing 82.45%. This improvement suggests that cross-participant data 
enhances the model’s ability to generalize across users, leading to 
better accuracy. This finding suggests a promising approach for 
collecting a large-scale dataset for pre-trained models, reducing 
the amount of training data needed per signer. Thus, our system 
validation could be extended from text input to conversational fin-
gerspelled words, forming part of a comprehensive ASL recognition 
system. 

7.3 Potential Uses Cases of SpellRing 
ASL fingerspelling, as noted in related work [19, 45], can serve as a 
fast and accessible text entry tool, outperforming virtual keyboards. 
Specifically, ASL fingerspelling can be significantly faster than typ-
ing on a smartphone’s virtual keyboard 5 [19, 45]. In this paper, we 
highlighted SpellRing’s potential as a text input tool, which could 
be suitable for devices such as mobile phones, home assistants, and 
VR/AR glasses, addressing challenges like the restricted camera 
field of view on these devices. We demonstrated potential applica-
tions, including web searches, map navigation, and text entry (as 
illustrated in Figure 10). 

We emphasized that while SpellRing is not a comprehensive ASL 
recognition system and focuses solely on recognizing fingerspelled 
sequences, its ability to distinguish between different handshapes, 
palm orientations, and movements in continuous fingerspelling 
represents a foundational step toward developing a comprehensive 
ASL recognition system. Building on prior work, such as SignRing 
[33]—which uses a single embedded IMU to classify signs—our 
system shows potential to enhance ASL sentence-level recognition 
by combining sign classification and fingerspelling recognition, 
especially in contexts where signs and fingerspelled words are 
used together (e.g., "MY NAME D-A-V-I-D"). This ability suggests a 
promising direction for future research and development. 

5https://www.kaggle.com/competitions/asl-fingerspelling 

https://5https://www.kaggle.com/competitions/asl-fingerspelling
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Figure 10: Potential Use cases of SpellRing: Web search, map navigation, and text input on a mobile phone 

7.4 Auto-Correction and Language Model 
We evaluated our system using the MacKenzie-Soukoreff phrase 
set [39] to align with previous work [45], allowing us to estimate 
performance and potential. Since our auto-correction and n-gram 
model were developed with our dataset, we conducted additional 
analysis of auto-correction to assess the generalization of our sys-
tem by incorporating different reference sets and utilizing large 
language models. When adding the ChicagoFSWild sets [63, 64] 
to the reference for auto-correction, our model’s top-1 word-level 
accuracy decreased by 7.1%, with a smaller drop of 2.5% in top-5 
accuracy, while the word error rate (WER) increased slightly from 
0.099 to 0.108. Using a general large language model (LLM), i.e., 
Llama 3.3 6 , for phrase-level correction, WER improved to 0.142, 
demonstrating the potential of language models to mitigate the 
decline in word-level accuracy. Since the word dictionary used for 
reference affects performance, we believe that SpellRing could be 
improved with customized word lists, such as user-defined lists 
based on their own common language usage, including names and 
colloquialisms. These lists can be created from their mobile mes-
sages or by allowing users to add words themselves. 

7.5 Design Optimization for Form Factors 
Our system currently utilizes a set of miniature sensors, including a 
microphone, speaker, and IMU sensor, but as a research prototype, 
these components are not yet fully optimized in terms of hardware 
design. For instance, the IMU sensor is housed on a separate PCB 
board, rather than being integrated with the microcontroller and 
acoustic sensors on a single, compact PCB. Despite these design 
limitations, the prototype performed well in initial user studies. 
However, further hardware optimization is essential to improve its 
long-term wearability and user comfort. A potential next step would 
involve fully integrating all sensors and the microcontroller into a 
single flexible PCB, which could be powered by a curved battery, 
similar to the compact designs used in commercially available smart 
rings. This integration would not only streamline the design but also 
reduce the system’s size and improve its overall form factor, making 
it less obtrusive for everyday use. With these advancements, we 
envision the prototype evolving into a fully functional, minimally 
obtrusive ring system that closely resembles off-the-shelf smart 
rings, offering enhanced practicality and user-friendliness for long-
term use. 

6https://www.llama.com/ 

7.6 Impact of Speed, Variation, and Clarity on 
Performance 

From our results, we observed a strong correlation between signing 
speed and performance, as shown in Figure 7. This relationship 
stems from differences in individual signing habits, irrespective of 
whether or not the signer is Deaf. When signers fingerspell quickly, 
they do not always articulate each letter clearly, which affects the 
clarity of certain letters within words. For instance, the letter ‘E’ 
exhibits considerable variation, especially when positioned in the 
middle of a word that is fingerspelled rapidly, which poses chal-
lenges for the model to accurately learn this letter. However, this 
variability in performance is largely dependent on individual sign-
ers. For instance, the model performed at different levels for fluent 
signers P7 and P8 from Study 1, stemming from key differences in 
how clearly and distinctly the participant fingerspelled each letter. 
Previous work [25] also highlights variation in fingerspelling be-
yond handshape, including speed and transitions. From Study 2, we 
gained insight into how signers adjusted their fingerspelling habits 
based on real-time feedback from the system. For example, they 
adjusted their fingerspelling speed and clarity to accommodate the 
system’s performance. Signers also reported that for real-time sys-
tems, they made an effort not to miss any letters to achieve better 
performance, whereas in a natural fingerspelling context, signers 
may have omitted certain letters. 

7.7 User-Independence Performance 
Given the success of Ring-a-Pose [71] in achieving strong user-
independent performance, we anticipated that our system would 
also perform well in a user-independent setting. To evaluate this, 
we conducted a leave-one-participant-out assessment. However, 
the overall performance achieved was 48.42% (SD = 12.38), ranging 
from 32.1% to 72.13%. This reflects real-world complexity by con-
sidering the natural behavior of users, such as variations in signers’ 
habits, including fast fingerspelling speed, blurred transitions, and 
individual fingerspelling styles [48–51]. 

Nevertheless, we recognize the potential of our system, as five 
participants with slightly slower and clearer signing habits achieved 
over 63% accuracy using a user-independent model. We believe that 
further expanding the dataset with more diverse participants could 
yield even greater gains. A larger dataset would likely enhance 
the model’s ability to generalize across different users and recog-
nize more complex actions, gestures, movements, or handshapes. 
Future work will focus on expanding the dataset and refining the 
model to optimize its effectiveness in both user-dependent and 

https://6https://www.llama.com
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user-independent scenarios, providing a deeper understanding of 
how best to enhance SpellRing’s performance. Additionally, we 
expect that future work on transfer learning will help lower the 
barrier and enhance the usability of a user-independent recognition 
model. 

7.8 Combining IMU and Acoustic Data for 
Improving Performance 

We experimented with a sensor fusion approach for ASL finger-
spelling recognition by combining acoustic sensing and IMU (Iner-
tial Measurement Unit) data. To evaluate the effectiveness of this 
multimodal approach, we tested our model using each participant’s 
data from Study 1 and 2 with leave-one-session-out cross-validation 
under three different conditions: acoustic-only, IMU-only, and sen-
sor fusion. Overall, the results showed that the acoustic-only model 
achieved an accuracy of 72.42% (SD=12.11%), while the IMU-only 
model performed slightly better with 74.29% (SD=9.22%). The sen-
sor fusion model, which integrated both data sources, achieved the 
highest accuracy at 78.11% (SD=7.88%), indicating that the multi-
modal approach outperformed using either modality alone. We note 
that across all sessions for each participant in Studies 1 and 2, the 
sensor fusion model outperformed the acoustic-only and IMU-only 
models. Additionally, the large standard deviation in performance 
observed across participants was primarily due to variations in their 
signing speeds rather than the ablation studies. The fusion model 
was particularly effective at resolving commonly misclassified letter 
pairs, such as ‘P’ and ‘K’, ‘G’ and ‘Q’, and ‘M’ and ‘N’, which were 
frequently confused by the single-modality models. These results 
suggest that sensor fusion can improve the accuracy and robustness 
of ASL fingerspelling recognition by leveraging the complementary 
strengths of both acoustic and IMU data. Nevertheless, while adding 
IMU sensors proved helpful, we acknowledge that incorporating 
IMU data did not significantly improve performance. Since native 
and fluent signers fingerspell rapidly, the differential values from 
the acoustic sensor alone can capture movement information dur-
ing letter transitions. Each modality recognizes fingerspelling in 
different ways, and given that IMU sensors are typically embedded 
in rings, their easy integration offers a combined approach that 
could enhance performance. We believe this insight will contribute 
to future design considerations for ring-based ASL recognition 
systems. 

7.9 Environmental Noise 
Our multimodal approach, utilizing both acoustic and IMU data, 
enhances the system’s robustness against environmental noise, par-
ticularly since the IMU sensor is unaffected by such noise. Our ab-
lation study demonstrated that the system performs reliably using 
a single IMU only but achieves better performance when acoustic 
signals are included. Conducted in semi-controlled environments, 
ranging from quiet rooms to participants’ homes with background 
noise from roommates, our study showed that the system delivers 
reliable performance in everyday noise conditions. Nevertheless, 
environmental acoustic noise, such as conversations or keyboard 
typing, can degrade signal quality and affect performance. To miti-
gate this, we applied band-pass filtering during signal processing to 
address lower-frequency environmental noise. Drawing on similar 

work using active acoustic sensing [31, 37, 71, 77], incorporating 
environmental noise data into the model could further enhance the 
system’s resilience against acoustic interference. 

7.10 Future Work 
The primary goal of this paper is to demonstrate the potential 
of a single, cost-effective ring (with a prototype cost of approxi-
mately US$30 [71], which could decrease with mass production) 
for ASL fingerspelling recognition. By sharing our findings, we 
aim to encourage more researchers in the field to collaborate in 
further developing this system. Our ultimate goal is to create an 
ASL translation system that Deaf and hard of hearing individuals 
could use in their daily lives to aid in communication between DHH 
and hearing individuals. 

As we move forward, future work should focus on integrating our 
system into AR smart glasses, where the entire system can recognize 
and distinguish subtle differences and individual variations in all 
ASL phonological parameters (i.e., handshape, palm orientation, 
movement, location, and non-manual markers) [68] to advance 
progress toward ASL translation, sign-to-speech, and/or speech-to-
text/sign-on-glass displays for DHH users. Our system’s ability to 
track handshape, palm orientation, and movement could enhance 
the system’s robustness by overcoming the limitations of camera 
use, such as restricted field-of-view and poor lighting conditions. 
Future work should also incorporate tracking of both hands to 
advance recognition of full ASL signs and sentences, rather than of 
just fingerspelled words. 

Additionally, future work should focus on developing more ro-
bust machine learning models capable of handling a larger vo-
cabulary and more varied signing styles while maintaining or im-
proving accuracy. Expanding the dataset, refining algorithms, and 
incorporating contextual information—such as preceding words or 
signs—could allow us to leverage language models for more accurate 
predictions. For example, in a conversation about closed captioning, 
fingerspelled words related to captioning could be corrected more 
accurately using statistical approaches. 

Most notably, training systems to recognize actual ASL signs (as 
opposed to just fingerspelled English words), is a crucial next step 
in working toward developing a wearable ASL translation/ recog-
nition tool. While SpellRing focuses on fingerspelling recognition, 
systems like SignRing [33] have shown the potential of ring devices 
with IMU sensors to recognize ASL signs. Our system, which can 
track handshape, palm orientation, and movement, could also be 
expanded to recognize ASL signs that share all properties except 
for handshape (e.g., FAMILY, CLASS, and TEAM), palm orientation 
(e.g., MAYBE and BALANCE), or movement (e.g., SIT and CHAIR). 
This capability could significantly enhance the accuracy and appli-
cability of the system for DHH users. 

Continual feedback from Deaf and hard of hearing (DHH) sign-
ers will be essential in ensuring future systems meet user needs 
and preferences. One example is the need to evaluate preferences 
on ring placement; as demonstrated by Ring-a-Pose [71], changing 
ring placement maintains potential for fingerspelling recognition, 
though it may sacrifice performance to improve user experience. 
As we expand SpellRing’s capabilities, we must strike a balance 
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between technological advancement and user comfort, always pri-
oritizing the user’s experience and input while creating a tool that 
recognizes natural signing data in real-time. 

8 Conclusion 
In this paper, we introduced SpellRing, a smart ring designed to con-
tinuously recognize words fingerspelled in ASL using a combination 
of acoustic sensing and IMU sensors. Our system tracks handshape, 
movement, and palm orientation, applying a deep learning model 
with Connectionist Temporal Classification (CTC) for word-level 
recognition. Through evaluations with 20 ASL signers, including 
12 fluent signers and 8 ASL learners, SpellRing achieved promising 
results, with a top-1 recognition accuracy of 82.45% and a real-
time phrase-level Word Error Rate (WER) of 0.099%. These results 
demonstrate the potential of using minimally obtrusive wearable 
technology for ASL recognition and translation. We also explored 
the impact of a two-step training model, sensor fusion, and design 
optimization for improving performance, showing that integrating 
data from multiple participants significantly enhances recognition 
accuracy. Future work will focus on expanding the dataset, refining 
hardware, and incorporating more complex ASL signs to create a 
comprehensive, user-friendly system for Deaf and hard of hearing 
individuals. 
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